These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 30272129
1. The Effect of Monolith Properties on the Digestion Performance of Monolith-Based Immobilized Enzyme Microreactor. Han X, Xie Y, Wu Q, Wu S. J Chromatogr Sci; 2019 Feb 01; 57(2):116-121. PubMed ID: 30272129 [Abstract] [Full Text] [Related]
2. Poly (N-acryloxysuccinimide-co-ethylene glycol dimethacrylate) precursor monolith and its post polymerization modification with alkyl ligands, trypsin and lectins for reversed-phase chromatography, miniaturized enzyme reactors and lectin affinity chromatography, respectively. Jonnada M, El Rassi Z. Electrophoresis; 2017 Nov 01; 38(22-23):2870-2879. PubMed ID: 28776699 [Abstract] [Full Text] [Related]
3. Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors. Meller K, Pomastowski P, Szumski M, Buszewski B. J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb 01; 1043():128-137. PubMed ID: 27595484 [Abstract] [Full Text] [Related]
4. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis. Liang Y, Tao D, Ma J, Sun L, Liang Z, Zhang L, Zhang Y. J Chromatogr A; 2011 May 20; 1218(20):2898-905. PubMed ID: 21450299 [Abstract] [Full Text] [Related]
5. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
6. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 13; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
7. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. Yuan H, Zhang L, Zhang Y. J Chromatogr A; 2014 Dec 05; 1371():48-57. PubMed ID: 25456586 [Abstract] [Full Text] [Related]
8. A novel organic-inorganic hybrid monolith for trypsin immobilization. Wu S, Ma J, Yang K, Liu J, Liang Z, Zhang L, Zhang Y. Sci China Life Sci; 2011 Jan 05; 54(1):54-9. PubMed ID: 21253871 [Abstract] [Full Text] [Related]
9. Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography. Kip Ç, Erkakan D, Gökaltun A, Çelebi B, Tuncel A. J Chromatogr A; 2015 May 29; 1396():86-97. PubMed ID: 25900740 [Abstract] [Full Text] [Related]
10. Layer-by-Layer Assembly of Metal-Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization. Wen L, Gao A, Cao Y, Svec F, Tan T, Lv Y. Macromol Rapid Commun; 2016 Mar 29; 37(6):551-7. PubMed ID: 26806691 [Abstract] [Full Text] [Related]
12. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Krenkova J, Lacher NA, Svec F. Anal Chem; 2009 Mar 01; 81(5):2004-12. PubMed ID: 19186936 [Abstract] [Full Text] [Related]
13. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Anal Chem; 2008 Apr 15; 80(8):2949-56. PubMed ID: 18333626 [Abstract] [Full Text] [Related]
14. Integrated platform of capillary isoelectric focusing, trypsin immobilized enzyme microreactor and nanoreversed-phase liquid chromatography with mass spectrometry for online protein profiling. Wang T, Ma J, Wu S, Yuan H, Zhang L, Liang Z, Zhang Y. Electrophoresis; 2011 Oct 15; 32(20):2848-56. PubMed ID: 21922499 [Abstract] [Full Text] [Related]
15. Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion. Safdar M, Spross J, Jänis J. J Mass Spectrom; 2013 Dec 15; 48(12):1281-4. PubMed ID: 24338882 [No Abstract] [Full Text] [Related]
16. Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry. Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G. J Chromatogr A; 2011 Dec 09; 1218(49):8937-45. PubMed ID: 21679957 [Abstract] [Full Text] [Related]
17. High throughput tryptic digestion via poly (acrylamide-co-methylenebisacrylamide) monolith based immobilized enzyme reactor. Wu S, Sun L, Ma J, Yang K, Liang Z, Zhang L, Zhang Y. Talanta; 2011 Feb 15; 83(5):1748-53. PubMed ID: 21238779 [Abstract] [Full Text] [Related]
18. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy. Chen Y, Wu M, Wang K, Chen B, Yao S, Zou H, Nie L. J Chromatogr A; 2011 Nov 04; 1218(44):7982-8. PubMed ID: 21937052 [Abstract] [Full Text] [Related]
19. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: effect of calcium ions on the immobilization procedure. Dartiguenave C, Hamad H, Waldron KC. Anal Chim Acta; 2010 Mar 24; 663(2):198-205. PubMed ID: 20206011 [Abstract] [Full Text] [Related]
20. Efficient and rapid digestion of proteins with a dual-enzyme microreactor featuring 3-D pores formed by dopamine/polyethyleneimine/acrylamide-coated KIT-6 molecular sieve. Yuan FF, Wang P, Han XJ, Qin TT, Lu X, Bai HJ. Sci Rep; 2024 Jul 08; 14(1):15667. PubMed ID: 38977741 [Abstract] [Full Text] [Related] Page: [Next] [New Search]