These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


539 related items for PubMed ID: 30273871

  • 1. Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications.
    Thanka Rajan S, Bendavid A, Subramanian B.
    Colloids Surf B Biointerfaces; 2019 Jan 01; 173():109-120. PubMed ID: 30273871
    [Abstract] [Full Text] [Related]

  • 2. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.
    V V AT, Bendavid A, Martin PJ, Vaithilingam V, Bean PA, Evans MDM, Subramanian B.
    Colloids Surf B Biointerfaces; 2017 Jul 01; 155():1-10. PubMed ID: 28384526
    [Abstract] [Full Text] [Related]

  • 3. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium.
    Rajan ST, V V AT, Terada-Nakaishi M, Chen P, Hanawa T, Nandakumar AK, Subramanian B.
    Biomed Mater; 2020 Oct 13; 15(6):065019. PubMed ID: 32615545
    [Abstract] [Full Text] [Related]

  • 4. Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications.
    Blanquer A, Musilkova J, Barrios L, Ibáñez E, Vandrovcova M, Pellicer E, Sort J, Bacakova L, Nogués C.
    J Biomed Mater Res B Appl Biomater; 2018 Feb 13; 106(2):834-842. PubMed ID: 28390183
    [Abstract] [Full Text] [Related]

  • 5. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.
    Wang X, Meng X, Chu S, Xiang X, Liu Z, Zhao J, Zhou Y.
    J Mater Sci Mater Med; 2016 Sep 13; 27(9):139. PubMed ID: 27534399
    [Abstract] [Full Text] [Related]

  • 6. Biocompatibility and corrosion evaluation of niobium oxide coated AZ31B alloy for biodegradable implants.
    Rajan ST, Das M, Arockiarajan A.
    Colloids Surf B Biointerfaces; 2022 Apr 13; 212():112342. PubMed ID: 35085937
    [Abstract] [Full Text] [Related]

  • 7. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY, Qiu KJ, Li HF, Huang T, Wang BL, Li L, Zheng YF.
    Acta Biomater; 2013 Dec 13; 9(12):9578-87. PubMed ID: 23928334
    [Abstract] [Full Text] [Related]

  • 8. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro].
    Yang X, Yin Q, Zhang Y, Li M, Lan G, Lin X, Tan L, Yang K.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May 13; 27(5):612-8. PubMed ID: 23879103
    [Abstract] [Full Text] [Related]

  • 9. Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces.
    Liu XH, Wu L, Ai HJ, Han Y, Hu Y.
    Mater Sci Eng C Mater Biol Appl; 2015 Mar 13; 48():256-62. PubMed ID: 25579921
    [Abstract] [Full Text] [Related]

  • 10. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.
    Subramanian B, Maruthamuthu S, Rajan ST.
    Int J Nanomedicine; 2015 Mar 13; 10 Suppl 1(Suppl 1):17-29. PubMed ID: 26491304
    [Abstract] [Full Text] [Related]

  • 11. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu 1-y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications.
    Mazur M, Kalisz M, Wojcieszak D, Grobelny M, Mazur P, Kaczmarek D, Domaradzki J.
    Mater Sci Eng C Mater Biol Appl; 2015 Feb 13; 47():211-21. PubMed ID: 25492191
    [Abstract] [Full Text] [Related]

  • 12. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y, Ding Y, Munir K, Lin J, Brandt M, Atrens A, Xiao Y, Kanwar JR, Wen C.
    Acta Biomater; 2019 Mar 15; 87():273-284. PubMed ID: 30690210
    [Abstract] [Full Text] [Related]

  • 13. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.
    Mendes MW, Ágreda CG, Bressiani AH, Bressiani JC.
    Mater Sci Eng C Mater Biol Appl; 2016 Jun 15; 63():671-7. PubMed ID: 27040264
    [Abstract] [Full Text] [Related]

  • 14. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability.
    Markhoff J, Weinmann M, Schulze C, Bader R.
    Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():756-766. PubMed ID: 28183670
    [Abstract] [Full Text] [Related]

  • 15. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn.
    Khrunyk YY, Ehnert S, Grib SV, Illarionov AG, Stepanov SI, Popov AA, Ryzhkov MA, Belikov SV, Xu Z, Rupp F, Nüssler AK.
    Int J Mol Sci; 2021 Sep 30; 22(19):. PubMed ID: 34638960
    [Abstract] [Full Text] [Related]

  • 16. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S, Yu Z, Wang G, Han J, Ma X, Dargusch MS.
    Colloids Surf B Biointerfaces; 2011 Jul 01; 85(2):103-15. PubMed ID: 21439798
    [Abstract] [Full Text] [Related]

  • 17. PEDOT/FHA nanocomposite coatings on newly developed Ti-Nb-Zr implants: Biocompatibility and surface protection against corrosion and bacterial infections.
    Madhan Kumar A, Adesina AY, Hussein MA, Ramakrishna S, Al-Aqeeli N, Akhtar S, Saravanan S.
    Mater Sci Eng C Mater Biol Appl; 2019 May 01; 98():482-495. PubMed ID: 30813050
    [Abstract] [Full Text] [Related]

  • 18. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J.
    Colloids Surf B Biointerfaces; 2016 Aug 01; 144():265-275. PubMed ID: 27100853
    [Abstract] [Full Text] [Related]

  • 19. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses.
    Li J, Shi LL, Zhu ZD, He Q, Ai HJ, Xu J.
    Mater Sci Eng C Mater Biol Appl; 2013 May 01; 33(4):2113-21. PubMed ID: 23498239
    [Abstract] [Full Text] [Related]

  • 20. Effect of nanofiber-coated surfaces on the proliferation and differentiation of osteoprogenitors in vitro.
    Huang Z, Daniels RH, Enzerink RJ, Hardev V, Sahi V, Goodman SB.
    Tissue Eng Part A; 2008 Nov 01; 14(11):1853-9. PubMed ID: 18950272
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.