These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


460 related items for PubMed ID: 30284145

  • 1. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH, Suh Y.
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [Abstract] [Full Text] [Related]

  • 2. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A.
    Epigenetics Chromatin; 2017 Dec; 10():24. PubMed ID: 28503202
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM, Machlin L, Dalal N, Lee RE, McDowell I, Shah NN, Drowley L, Randell SH, Reddy TE.
    J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825
    [Abstract] [Full Text] [Related]

  • 6. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D, Koncz M, Kiss A, Rots MG.
    Methods Mol Biol; 2018 Jan; 1767():395-415. PubMed ID: 29524148
    [Abstract] [Full Text] [Related]

  • 7. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors.
    Noviello G, Gjaltema RAF.
    Methods Mol Biol; 2024 Jan; 2842():57-77. PubMed ID: 39012590
    [Abstract] [Full Text] [Related]

  • 8. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F, Koncz M, Eilers RE, Verschure PJ, Rots MG.
    Methods Mol Biol; 2024 Jan; 2842():289-307. PubMed ID: 39012602
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Transgenic mice for in vivo epigenome editing with CRISPR-based systems.
    Gemberling MP, Siklenka K, Rodriguez E, Tonn-Eisinger KR, Barrera A, Liu F, Kantor A, Li L, Cigliola V, Hazlett MF, Williams CA, Bartelt LC, Madigan VJ, Bodle JC, Daniels H, Rouse DC, Hilton IB, Asokan A, Ciofani M, Poss KD, Reddy TE, West AE, Gersbach CA.
    Nat Methods; 2021 Aug; 18(8):965-974. PubMed ID: 34341582
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I, Chaturvedi A, Chitkara D, Singh S.
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS, Jaenisch R.
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [Abstract] [Full Text] [Related]

  • 16. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression.
    Seem K, Kaur S, Kumar S, Mohapatra T.
    Crit Rev Biochem Mol Biol; 2024 Dec; 59(1-2):69-98. PubMed ID: 38440883
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Reader-Effectors as Actuators of Epigenome Editing.
    Kim SH, Haynes KA.
    Methods Mol Biol; 2024 Dec; 2842():103-127. PubMed ID: 39012592
    [Abstract] [Full Text] [Related]

  • 20. The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders.
    Kantor B, O'Donovan B, Rittiner J, Hodgson D, Lindner N, Guerrero S, Dong W, Zhang A, Chiba-Falek O.
    Nat Commun; 2024 Aug 23; 15(1):7259. PubMed ID: 39179542
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.