These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


331 related items for PubMed ID: 30290071

  • 1. Finite-Element Syntheses of Callus and Bone Remodeling: Biomechanical Study of Fracture Healing in Long Bones.
    Lipphaus A, Witzel U.
    Anat Rec (Hoboken); 2018 Dec; 301(12):2112-2121. PubMed ID: 30290071
    [Abstract] [Full Text] [Related]

  • 2. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage.
    Ghiasi MS, Chen JE, Rodriguez EK, Vaziri A, Nazarian A.
    BMC Musculoskelet Disord; 2019 Nov 25; 20(1):562. PubMed ID: 31767007
    [Abstract] [Full Text] [Related]

  • 3. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation.
    Steiner M, Claes L, Ignatius A, Simon U, Wehner T.
    J Orthop Res; 2014 Jul 25; 32(7):865-72. PubMed ID: 24648331
    [Abstract] [Full Text] [Related]

  • 4. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T, Steiner M, Ignatius A, Claes L.
    PLoS One; 2014 Jul 25; 9(12):e115695. PubMed ID: 25532060
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
    García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB.
    J Biomech; 2007 Jul 25; 40(7):1467-76. PubMed ID: 16930609
    [Abstract] [Full Text] [Related]

  • 10. Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture.
    Al-Sukhun J, Penttilä H, Ashammakhi N.
    J Craniofac Surg; 2012 Jan 25; 23(1):126-30. PubMed ID: 22337388
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Computational simulation of the early stage of bone healing under different configurations of locking compression plates.
    Miramini S, Zhang L, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G.
    Comput Methods Biomech Biomed Engin; 2015 Jan 25; 18(8):900-13. PubMed ID: 24261957
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Predicting the external formation of a bone fracture callus: an optimisation approach.
    Comiskey DP, MacDonald BJ, McCartney WT, Synnott K, O'Byrne J.
    Comput Methods Biomech Biomed Engin; 2012 Jan 25; 15(7):779-85. PubMed ID: 21614706
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.
    Vetter A, Liu Y, Witt F, Manjubala I, Sander O, Epari DR, Fratzl P, Duda GN, Weinkamer R.
    J Biomech; 2011 Feb 03; 44(3):517-23. PubMed ID: 20965507
    [Abstract] [Full Text] [Related]

  • 20. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
    Andreykiv A, van Keulen F, Prendergast PJ.
    Biomech Model Mechanobiol; 2008 Dec 03; 7(6):443-61. PubMed ID: 17972123
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.