These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
268 related items for PubMed ID: 30296949
1. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Yan J, Xu J, Cao M, Li Z, Xu C, Wang X, Yang C, Xu P, Gao C, Ma C. Microb Cell Fact; 2018 Oct 08; 17(1):158. PubMed ID: 30296949 [Abstract] [Full Text] [Related]
2. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way. Lu L, Wei L, Zhu K, Wei D, Hua Q. Bioresour Technol; 2012 Aug 08; 117():317-24. PubMed ID: 22617040 [Abstract] [Full Text] [Related]
3. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Wei S, Song Q, Wei D. Prep Biochem Biotechnol; 2007 Aug 08; 37(2):113-21. PubMed ID: 17454822 [Abstract] [Full Text] [Related]
4. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H. Zhang M, Wei L, Zhou Y, Du L, Imanaka T, Hua Q. J Ind Microbiol Biotechnol; 2013 Apr 08; 40(3-4):379-88. PubMed ID: 23381123 [Abstract] [Full Text] [Related]
5. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Hölscher T, Görisch H. J Bacteriol; 2006 Nov 08; 188(21):7668-76. PubMed ID: 16936032 [Abstract] [Full Text] [Related]
9. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans. Fidaleo M, Charaniya S, Solheid C, Diel U, Laudon M, Ge H, Scriven LE, Flickinger MC. Biotechnol Bioeng; 2006 Oct 20; 95(3):446-58. PubMed ID: 16804947 [Abstract] [Full Text] [Related]
10. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Zhou X, Xu Y, Yu S. Appl Biochem Biotechnol; 2016 Jan 20; 178(1):1-8. PubMed ID: 26378011 [Abstract] [Full Text] [Related]
13. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. J Biotechnol; 2017 Sep 20; 258():197-205. PubMed ID: 28433722 [Abstract] [Full Text] [Related]
14. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J, Wu M, Lin J, Yang L. BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063 [Abstract] [Full Text] [Related]
15. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Zhou X, Han J, Xu Y. Bioresour Technol; 2019 Jun 17; 282():378-383. PubMed ID: 30884457 [Abstract] [Full Text] [Related]
16. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A. Appl Microbiol Biotechnol; 2017 Apr 17; 101(8):3189-3200. PubMed ID: 28064365 [Abstract] [Full Text] [Related]
19. Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Wu X, Wang X, Lu W. Biosystems; 2014 Mar 17; 117():10-4. PubMed ID: 24418346 [Abstract] [Full Text] [Related]