These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 30297651
1. A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy. Cifuentes R, Van der Zande D, Salas-Eljatib C, Farifteh J, Coppin P. Sensors (Basel); 2018 Oct 08; 18(10):. PubMed ID: 30297651 [Abstract] [Full Text] [Related]
2. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China]. Yu QZ, Wang SQ, Huang K, Zhou L, Chen DC. Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul 08; 35(7):1980-5. PubMed ID: 26717763 [Abstract] [Full Text] [Related]
3. Estimating forest stand structure attributes from terrestrial laser scans. Pascu IS, Dobre AC, Badea O, Tănase MA. Sci Total Environ; 2019 Nov 15; 691():205-215. PubMed ID: 31319256 [Abstract] [Full Text] [Related]
4. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA, Hufkens K, O'Keef J, Klosterman S, Munger JW, Toome M, Richardson AD. Ecol Appl; 2014 Nov 15; 24(6):1478-89. PubMed ID: 29160668 [Abstract] [Full Text] [Related]
5. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Yang H, Yang X, Zhang Y, Heskel MA, Lu X, Munger JW, Sun S, Tang J. Glob Chang Biol; 2017 Jul 15; 23(7):2874-2886. PubMed ID: 27976474 [Abstract] [Full Text] [Related]
6. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models]. Yang XG, Fan WY, Yu Y. Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov 15; 30(11):3022-6. PubMed ID: 21284176 [Abstract] [Full Text] [Related]
8. [Forest canopy leaf area index in Maoershan Mountain: ground measurement and remote sensing retrieval]. Zhu GL, Ju WM, Jm C, Fan WY, Zhou YL, Li XF, Li MZ. Ying Yong Sheng Tai Xue Bao; 2010 Aug 15; 21(8):2117-24. PubMed ID: 21043124 [Abstract] [Full Text] [Related]
9. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3. Gray SB, Dermody O, DeLucia EH. J Exp Bot; 2010 Oct 15; 61(15):4413-22. PubMed ID: 20696654 [Abstract] [Full Text] [Related]
10. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales. Yang T, Yu Y, Yang XG, DU HX. Ying Yong Sheng Tai Xue Bao; 2023 Aug 15; 34(8):2101-2112. PubMed ID: 37681374 [Abstract] [Full Text] [Related]
11. Chlorophyll content retrieval from hyperspectral remote sensing imagery. Yang X, Yu Y, Fan W. Environ Monit Assess; 2015 Jul 15; 187(7):456. PubMed ID: 26095901 [Abstract] [Full Text] [Related]
12. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging. Hosoi F, Omasa K. Funct Plant Biol; 2009 Nov 15; 36(11):998-1005. PubMed ID: 32688711 [Abstract] [Full Text] [Related]
13. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach. Kamoske AG, Dahlin KM, Serbin SP, Stark SC. Ecol Appl; 2021 Mar 15; 31(2):e02230. PubMed ID: 33015908 [Abstract] [Full Text] [Related]
14. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. Smith MN, Stark SC, Taylor TC, Ferreira ML, de Oliveira E, Restrepo-Coupe N, Chen S, Woodcock T, Dos Santos DB, Alves LF, Figueira M, de Camargo PB, de Oliveira RC, Aragão LEOC, Falk DA, McMahon SM, Huxman TE, Saleska SR. New Phytol; 2019 May 15; 222(3):1284-1297. PubMed ID: 30720871 [Abstract] [Full Text] [Related]
15. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Fotis AT, Curtis PS. Tree Physiol; 2017 Oct 01; 37(10):1426-1435. PubMed ID: 28100711 [Abstract] [Full Text] [Related]
16. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania. Shirima DD, Pfeifer M, Platts PJ, Totland Ø, Moe SR. PLoS One; 2015 Oct 01; 10(11):e0142784. PubMed ID: 26559410 [Abstract] [Full Text] [Related]
17. [Effects of temporal and spatial variation of canopy structures and light conditions on population characteristics of Fargesia decurvata.]. Huang HM, Dong R, He DN, Xiang YR, Zhang XJ, Chen J, Tao JP. Ying Yong Sheng Tai Xue Bao; 2018 Jul 01; 29(7):2129-2138. PubMed ID: 30039649 [Abstract] [Full Text] [Related]
18. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Yang H, Yang X, Heskel M, Sun S, Tang J. Sci Rep; 2017 Apr 28; 7(1):1267. PubMed ID: 28455492 [Abstract] [Full Text] [Related]
19. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination. Bandaru V, Daughtry CS, Codling EE, Hansen DJ, White-Hansen S, Green CE. Int J Environ Res Public Health; 2016 Jun 18; 13(6):. PubMed ID: 27322304 [Abstract] [Full Text] [Related]
20. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W, Huang W, Casa R, Zhou X, Ye H, Dong Y. Sensors (Basel); 2017 Nov 23; 17(12):. PubMed ID: 29168757 [Abstract] [Full Text] [Related] Page: [Next] [New Search]