These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 30301612

  • 1. Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs.
    Luo Z, Luo W, Li S, Zhao S, Sho T, Xu X, Zhang J, Xu W, Xu J.
    Reprod Biol; 2018 Dec; 18(4):422-431. PubMed ID: 30301612
    [Abstract] [Full Text] [Related]

  • 2. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia.
    Mandò C, De Palma C, Stampalija T, Anelli GM, Figus M, Novielli C, Parisi F, Clementi E, Ferrazzi E, Cetin I.
    Am J Physiol Endocrinol Metab; 2014 Feb 15; 306(4):E404-13. PubMed ID: 24347055
    [Abstract] [Full Text] [Related]

  • 3. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction.
    Wang B, Xu S, Lu X, Ma L, Gao L, Zhang SY, Li R, Fu L, Wang H, Sun GP, Xu DX.
    Environ Pollut; 2020 May 15; 260():113984. PubMed ID: 32041019
    [Abstract] [Full Text] [Related]

  • 4. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for "placental hyperoxia" in intrauterine growth restriction.
    Khaliq A, Dunk C, Jiang J, Shams M, Li XF, Acevedo C, Weich H, Whittle M, Ahmed A.
    Lab Invest; 1999 Feb 15; 79(2):151-70. PubMed ID: 10068204
    [Abstract] [Full Text] [Related]

  • 5. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency.
    Kyllo HM, Wang D, Lorca RA, Julian CG, Moore LG, Wilkening RB, Rozance PJ, Brown LD, Wesolowski SR.
    Am J Physiol Endocrinol Metab; 2023 Jun 01; 324(6):E556-E568. PubMed ID: 37126847
    [Abstract] [Full Text] [Related]

  • 6. Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction.
    Guitart-Mampel M, Gonzalez-Tendero A, Niñerola S, Morén C, Catalán-Garcia M, González-Casacuberta I, Juárez-Flores DL, Ugarteburu O, Matalonga L, Cascajo MV, Tort F, Cortés A, Tobias E, Milisenda JC, Grau JM, Crispi F, Gratacós E, Garrabou G, Cardellach F.
    Biochim Biophys Acta Gen Subj; 2018 May 01; 1862(5):1157-1167. PubMed ID: 29452236
    [Abstract] [Full Text] [Related]

  • 7. Intrauterine growth restriction in humans is associated with abnormalities in placental insulin-like growth factor signaling.
    Laviola L, Perrini S, Belsanti G, Natalicchio A, Montrone C, Leonardini A, Vimercati A, Scioscia M, Selvaggi L, Giorgino R, Greco P, Giorgino F.
    Endocrinology; 2005 Mar 01; 146(3):1498-505. PubMed ID: 15564321
    [Abstract] [Full Text] [Related]

  • 8. Lower citrate synthase activity, mitochondrial complex expression, and fewer oxidative myofibers characterize skeletal muscle from growth-restricted fetal sheep.
    Stremming J, Chang EI, Knaub LA, Armstrong ML, Baker PR, Wesolowski SR, Reisdorph N, Reusch JEB, Brown LD.
    Am J Physiol Regul Integr Comp Physiol; 2022 Mar 01; 322(3):R228-R240. PubMed ID: 34907787
    [Abstract] [Full Text] [Related]

  • 9. Coumestrol induces mitochondrial dysfunction by stimulating ROS production and calcium ion influx into mitochondria in human placental choriocarcinoma cells.
    Lim W, Yang C, Jeong M, Bazer FW, Song G.
    Mol Hum Reprod; 2017 Nov 01; 23(11):786-802. PubMed ID: 29040664
    [Abstract] [Full Text] [Related]

  • 10. Mitochondrial and glycolysis-regulatory gene expression profiles are associated with intrauterine growth restriction.
    Jones R, Peña J, Mystal E, Marsit C, Lee MJ, Stone J, Lambertini L.
    J Matern Fetal Neonatal Med; 2020 Apr 01; 33(8):1336-1345. PubMed ID: 30251570
    [Abstract] [Full Text] [Related]

  • 11. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction.
    Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS, Burton GJ.
    Am J Pathol; 2008 Aug 01; 173(2):451-62. PubMed ID: 18583310
    [Abstract] [Full Text] [Related]

  • 12. Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses.
    Pendleton AL, Wesolowski SR, Regnault TRH, Lynch RM, Limesand SW.
    Front Endocrinol (Lausanne); 2021 Aug 01; 12():612888. PubMed ID: 34079518
    [Abstract] [Full Text] [Related]

  • 13. Alterations in placental long chain polyunsaturated fatty acid metabolism in human intrauterine growth restriction.
    Chassen SS, Ferchaud-Roucher V, Gupta MB, Jansson T, Powell TL.
    Clin Sci (Lond); 2018 Mar 15; 132(5):595-607. PubMed ID: 29463583
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of placental ghrelin production and its receptor expression in a Dahl salt-sensitive rat model of intrauterine growth restriction.
    Nonoshita A, Nishi Y, Takushima S, Oshima M, Hosoda H, Kangawa K, Kojima M, Mifune H, Tanaka E, Hori D, Kamura T.
    Placenta; 2010 May 15; 31(5):358-64. PubMed ID: 20346506
    [Abstract] [Full Text] [Related]

  • 15. Placental mitochondrial DNA mutations and copy numbers in intrauterine growth restricted (IUGR) pregnancy.
    Naha R, Anees A, Chakrabarty S, Naik PS, Pandove M, Pandey D, Satyamoorthy K.
    Mitochondrion; 2020 Nov 15; 55():85-94. PubMed ID: 32861875
    [Abstract] [Full Text] [Related]

  • 16. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress.
    Ryu S, Lim W, Bazer FW, Song G.
    J Cell Physiol; 2017 Dec 15; 232(12):3786-3797. PubMed ID: 28213961
    [Abstract] [Full Text] [Related]

  • 17. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts.
    Kefaloyianni E, Gaitanaki C, Beis I.
    Cell Signal; 2006 Dec 15; 18(12):2238-51. PubMed ID: 16806820
    [Abstract] [Full Text] [Related]

  • 18. Role of oxidative stress in intrauterine growth restriction.
    Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I.
    Gynecol Obstet Invest; 2007 Dec 15; 64(4):187-92. PubMed ID: 17664879
    [Abstract] [Full Text] [Related]

  • 19. Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling.
    Guitart-Mampel M, Juarez-Flores DL, Youssef L, Moren C, Garcia-Otero L, Roca-Agujetas V, Catalan-Garcia M, Gonzalez-Casacuberta I, Tobias E, Milisenda JC, Grau JM, Crispi F, Gratacos E, Cardellach F, Garrabou G.
    J Cell Mol Med; 2019 Jun 15; 23(6):3962-3973. PubMed ID: 30941904
    [Abstract] [Full Text] [Related]

  • 20. Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways.
    Tang Y, Jacobi A, Vater C, Zou X, Stiehler M.
    Biochem Pharmacol; 2014 Jul 01; 90(1):34-49. PubMed ID: 24780446
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.