These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 30317479
1. Reconstitution of Molybdoenzymes with Bis-Molybdopterin Guanine Dinucleotide Cofactors. Kaufmann P, Iobbi-Nivol C, Leimkühler S. Methods Mol Biol; 2019; 1876():141-152. PubMed ID: 30317479 [Abstract] [Full Text] [Related]
2. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Tiedemann K, Iobbi-Nivol C, Leimkühler S. Molecules; 2022 May 06; 27(9):. PubMed ID: 35566344 [Abstract] [Full Text] [Related]
3. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli. Reschke S, Duffus BR, Schrapers P, Mebs S, Teutloff C, Dau H, Haumann M, Leimkühler S. Biochemistry; 2019 Apr 30; 58(17):2228-2242. PubMed ID: 30945846 [Abstract] [Full Text] [Related]
4. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase. Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M, Jänsch L, Wollenberger U, Leimkühler S. Biochemistry; 2018 Feb 20; 57(7):1130-1143. PubMed ID: 29334455 [Abstract] [Full Text] [Related]
5. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli. Reschke S, Sigfridsson KG, Kaufmann P, Leidel N, Horn S, Gast K, Schulzke C, Haumann M, Leimkühler S. J Biol Chem; 2013 Oct 11; 288(41):29736-45. PubMed ID: 24003231 [Abstract] [Full Text] [Related]
6. The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor. Böhmer N, Hartmann T, Leimkühler S. FEBS Lett; 2014 Feb 14; 588(4):531-7. PubMed ID: 24444607 [Abstract] [Full Text] [Related]
7. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Iobbi-Nivol C, Leimkühler S. Biochim Biophys Acta; 2013 Feb 14; 1827(8-9):1086-101. PubMed ID: 23201473 [Abstract] [Full Text] [Related]
8. Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA. Neumann M, Stöcklein W, Leimkühler S. J Biol Chem; 2007 Sep 28; 282(39):28493-28500. PubMed ID: 17686778 [Abstract] [Full Text] [Related]
9. The biosynthesis of the molybdenum cofactors in Escherichia coli. Leimkühler S. Environ Microbiol; 2020 Jun 28; 22(6):2007-2026. PubMed ID: 32239579 [Abstract] [Full Text] [Related]
10. The biosynthesis of the molybdenum cofactors. Mendel RR, Leimkühler S. J Biol Inorg Chem; 2015 Mar 28; 20(2):337-47. PubMed ID: 24980677 [Abstract] [Full Text] [Related]
11. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Solomon PS, Lane I, Hanson GR, McEwan AG. Eur J Biochem; 1997 May 15; 246(1):200-3. PubMed ID: 9210484 [Abstract] [Full Text] [Related]
12. Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. Johnson JL, Indermaur LW, Rajagopalan KV. J Biol Chem; 1991 Jul 05; 266(19):12140-5. PubMed ID: 1648082 [Abstract] [Full Text] [Related]
13. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization. Kuper J, Palmer T, Mendel RR, Schwarz G. Proc Natl Acad Sci U S A; 2000 Jun 06; 97(12):6475-80. PubMed ID: 10823911 [Abstract] [Full Text] [Related]
14. Iron limitation indirectly reduces the Escherichia coli torCAD operon expression by a reduction of molybdenum cofactor availability. Hasnat MA, Zupok A, Gorka M, Iobbi-Nivol C, Skirycz A, Jourlin-Castelli C, Bier F, Agarwal S, Irefo E, Leimkühler S. Microbiol Spectr; 2024 Feb 06; 12(2):e0348023. PubMed ID: 38193660 [Abstract] [Full Text] [Related]
15. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. Leimkühler S, Angermüller S, Schwarz G, Mendel RR, Klipp W. J Bacteriol; 1999 Oct 06; 181(19):5930-9. PubMed ID: 10498704 [Abstract] [Full Text] [Related]
16. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor. Leimkühler S, Klipp W. FEMS Microbiol Lett; 1999 May 15; 174(2):239-46. PubMed ID: 10339814 [Abstract] [Full Text] [Related]
17. One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. Reichenbecher W, Rüdiger A, Kroneck PM, Schink B. Eur J Biochem; 1996 Apr 15; 237(2):406-13. PubMed ID: 8647079 [Abstract] [Full Text] [Related]
18. Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum. Hilton JC, Rajagopalan KV. Arch Biochem Biophys; 1996 Jan 01; 325(1):139-43. PubMed ID: 8554338 [Abstract] [Full Text] [Related]
19. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli. Sandu C, Brandsch R. Arch Microbiol; 2002 Dec 01; 178(6):465-70. PubMed ID: 12420167 [Abstract] [Full Text] [Related]
20. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli. Neumann M, Leimkühler S. FEBS J; 2008 Nov 01; 275(22):5678-89. PubMed ID: 18959753 [Abstract] [Full Text] [Related] Page: [Next] [New Search]