These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 30319674

  • 21. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum.
    Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, Wang J, Zhang M, Zhang L, Yang Q, Wang K.
    Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087
    [Abstract] [Full Text] [Related]

  • 22. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N, D'Hont A.
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [Abstract] [Full Text] [Related]

  • 23. Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum.
    Dong G, Shen J, Zhang Q, Wang J, Yu Q, Ming R, Wang K, Zhang J.
    Front Plant Sci; 2018 Sep; 9():218. PubMed ID: 29535742
    [Abstract] [Full Text] [Related]

  • 24. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes.
    Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH.
    Genetics; 1998 Dec; 150(4):1663-82. PubMed ID: 9832541
    [Abstract] [Full Text] [Related]

  • 25. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars.
    Huang Y, Chen H, Han J, Zhang Y, Ma S, Yu G, Wang Z, Wang K.
    Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693
    [Abstract] [Full Text] [Related]

  • 26. A mosaic monoploid reference sequence for the highly complex genome of sugarcane.
    Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Van Sluys MA, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann JC, van der Vossen E, Henry R, Schmutz J, D'Hont A.
    Nat Commun; 2018 Jul 06; 9(1):2638. PubMed ID: 29980662
    [Abstract] [Full Text] [Related]

  • 27. Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization.
    Yu F, Wang P, Li X, Huang Y, Wang Q, Luo L, Jing Y, Liu X, Deng Z, Wu J, Yang Y, Chen R, Zhang M, Xu L.
    Mol Cytogenet; 2018 Jul 06; 11():35. PubMed ID: 29977338
    [Abstract] [Full Text] [Related]

  • 28. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum.
    Jiang Q, Hua X, Shi H, Liu J, Yuan Y, Li Z, Li S, Zhou M, Yin C, Dou M, Qi N, Wang Y, Zhang M, Ming R, Tang H, Zhang J.
    Plant J; 2023 Mar 06; 113(6):1278-1294. PubMed ID: 36648196
    [Abstract] [Full Text] [Related]

  • 29. Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum.
    Zhang W, Zuo S, Li Z, Meng Z, Han J, Song J, Pan YB, Wang K.
    Sci Rep; 2017 Jan 30; 7():41659. PubMed ID: 28134354
    [Abstract] [Full Text] [Related]

  • 30. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane.
    Piperidis G, Piperidis N, D'Hont A.
    Mol Genet Genomics; 2010 Jul 30; 284(1):65-73. PubMed ID: 20532565
    [Abstract] [Full Text] [Related]

  • 31. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis.
    Zhao J, Li S, Xu Y, Ahmad N, Kuang B, Feng M, Wei N, Yang X.
    J Adv Res; 2023 Dec 30; 54():1-13. PubMed ID: 36781019
    [Abstract] [Full Text] [Related]

  • 32. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum.
    Li Z, Wang G, Liu X, Wang Z, Zhang M, Zhang J.
    BMC Genomics; 2021 Jun 17; 22(1):456. PubMed ID: 34139993
    [Abstract] [Full Text] [Related]

  • 33. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.
    Grativol C, Regulski M, Bertalan M, McCombie WR, da Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA, Ferreira PC.
    Plant J; 2014 Jul 17; 79(1):162-72. PubMed ID: 24773339
    [Abstract] [Full Text] [Related]

  • 34. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum.
    Song J, Zhang X, Jones T, Wang ML, Ming R.
    Plant Reprod; 2024 Dec 17; 37(4):489-506. PubMed ID: 38844561
    [Abstract] [Full Text] [Related]

  • 35. Comprehensively Characterizing the Cytological Features of Saccharum spontaneum by the Development of a Complete Set of Chromosome-Specific Oligo Probes.
    Meng Z, Zhang Z, Yan T, Lin Q, Wang Y, Huang W, Huang Y, Li Z, Yu Q, Wang J, Wang K.
    Front Plant Sci; 2018 Dec 17; 9():1624. PubMed ID: 30459801
    [Abstract] [Full Text] [Related]

  • 36. Sequence Evolution, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in the Saccharum spontaneum Genome.
    Yang S, Zeng K, Chen K, Zhao X, Wu J, Huang Y, Zhang M, Deng Z.
    Cytogenet Genome Res; 2020 Dec 17; 160(5):272-282. PubMed ID: 32516773
    [Abstract] [Full Text] [Related]

  • 37. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid.
    Grivet L, D'Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC.
    Genetics; 1996 Mar 17; 142(3):987-1000. PubMed ID: 8849904
    [Abstract] [Full Text] [Related]

  • 38. The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads.
    Shearman JR, Sonthirod C, Naktang C, Pootakham W, Yoocha T, Sangsrakru D, Jomchai N, Tragoonrung S, Tangphatsornruang S.
    Sci Rep; 2016 Aug 17; 6():31533. PubMed ID: 27530092
    [Abstract] [Full Text] [Related]

  • 39. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin.
    Kim C, Lee TH, Compton RO, Robertson JS, Pierce GJ, Paterson AH.
    Plant Mol Biol; 2013 Jan 17; 81(1-2):139-47. PubMed ID: 23161199
    [Abstract] [Full Text] [Related]

  • 40. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum).
    Zhang Q, Hua X, Liu H, Yuan Y, Shi Y, Wang Z, Zhang M, Ming R, Zhang J.
    Plant J; 2021 Feb 17; 105(4):884-906. PubMed ID: 33179305
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.