These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 3032081

  • 1. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment.
    Liebman PA, Parker KR, Dratz EA.
    Annu Rev Physiol; 1987; 49():765-91. PubMed ID: 3032081
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Intracellular biochemical manipulation of phototransduction in detached rod outer segments.
    Sather WA, Detwiler PB.
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9290-4. PubMed ID: 2827176
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Trigger and amplification mechanisms in visual phototransduction.
    Chabre M.
    Annu Rev Biophys Biophys Chem; 1985 Dec; 14():331-60. PubMed ID: 2988577
    [No Abstract] [Full Text] [Related]

  • 10. Phototransduction in vertebrate rods.
    Schwartz EA.
    Annu Rev Neurosci; 1985 Dec; 8():339-67. PubMed ID: 2580472
    [No Abstract] [Full Text] [Related]

  • 11. Rhodopsin lateral diffusion as a function of rod outer segment disk membrane axial position.
    Kaplan MW.
    Biophys J; 1984 Apr; 45(4):851-3. PubMed ID: 6722271
    [Abstract] [Full Text] [Related]

  • 12. Studies on visual transduction in the retinal rods of the frog.
    Baumann C.
    Ophthalmic Res; 1984 Apr; 16(1-2):8-14. PubMed ID: 6610153
    [Abstract] [Full Text] [Related]

  • 13. The transducin cascade is involved in the light-induced structural changes observed by neutron diffraction on retinal rod outer segments.
    Vuong TM, Pfister C, Worcester DL, Chabre M.
    Biophys J; 1987 Oct; 52(4):587-94. PubMed ID: 3118983
    [Abstract] [Full Text] [Related]

  • 14. Progress in phototransduction.
    Stavenga DG, de Grip WJ.
    Biophys Struct Mech; 1983 Oct; 9(4):225-30. PubMed ID: 6303464
    [No Abstract] [Full Text] [Related]

  • 15. Calcium regulates the rate of rhodopsin disactivation and the primary amplification step in visual transduction.
    Wagner R, Ryba N, Uhl R.
    FEBS Lett; 1989 Jan 02; 242(2):249-54. PubMed ID: 2914607
    [Abstract] [Full Text] [Related]

  • 16. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates.
    Trissl HW.
    Methods Enzymol; 1982 Jan 02; 81():431-9. PubMed ID: 7098890
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry.
    Tsui FC, Sundberg SA, Hubbell WL.
    Biophys J; 1990 Jan 02; 57(1):85-97. PubMed ID: 2153422
    [Abstract] [Full Text] [Related]

  • 19. Millisecond activation of transducin in the cyclic nucleotide cascade of vision.
    Vuong TM, Chabre M, Stryer L.
    Nature; 1990 Jan 02; 311(5987):659-61. PubMed ID: 6090950
    [Abstract] [Full Text] [Related]

  • 20. Sulfhydryl group modification of photoreceptor G-protein prevents its light-induced binding to rhodopsin.
    Reichert J, Hofmann KP.
    FEBS Lett; 1984 Mar 12; 168(1):121-4. PubMed ID: 6705917
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.