These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 30333484

  • 1. Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron.
    Zou W, Fu J, Zhang H, Du K, Huang W, Yu J, Li S, Fan Y, Baylis HA, Gao S, Xiao R, Ji W, Kang L, Xu T.
    Nat Commun; 2018 Oct 17; 9(1):4311. PubMed ID: 30333484
    [Abstract] [Full Text] [Related]

  • 2. Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3.
    Bhardwaj A, Pandey P, Babu K.
    Genetics; 2020 Jan 17; 214(1):135-145. PubMed ID: 31740450
    [Abstract] [Full Text] [Related]

  • 3. The Snail transcription factor CES-1 regulates glutamatergic behavior in C. elegans.
    Park L, Luth ES, Jones K, Hofer J, Nguyen I, Watters KE, Juo P.
    PLoS One; 2021 Jan 17; 16(2):e0245587. PubMed ID: 33529210
    [Abstract] [Full Text] [Related]

  • 4. OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses.
    Hori S, Oda S, Suehiro Y, Iino Y, Mitani S.
    PLoS Genet; 2018 Jun 17; 14(6):e1007477. PubMed ID: 29939997
    [Abstract] [Full Text] [Related]

  • 5. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1.
    McGehee AM, Moss BJ, Juo P.
    Mol Cell Neurosci; 2015 Jul 17; 67():66-74. PubMed ID: 26054666
    [Abstract] [Full Text] [Related]

  • 6. A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na+ Chemotaxis.
    Wang L, Sato H, Satoh Y, Tomioka M, Kunitomo H, Iino Y.
    J Neurosci; 2017 Feb 22; 37(8):2097-2111. PubMed ID: 28126744
    [Abstract] [Full Text] [Related]

  • 7. NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans.
    Campbell JC, Polan-Couillard LF, Chin-Sang ID, Bendena WG.
    PLoS Genet; 2016 May 22; 12(5):e1006050. PubMed ID: 27223098
    [Abstract] [Full Text] [Related]

  • 8. Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans.
    Mabardi L, Sato H, Toyoshima Y, Iino Y, Kunitomo H.
    Neurosci Res; 2023 Jan 22; 186():33-42. PubMed ID: 36252701
    [Abstract] [Full Text] [Related]

  • 9. Glutamate signaling from a single sensory neuron mediates experience-dependent bidirectional behavior in Caenorhabditis elegans.
    Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y.
    Cell Rep; 2021 May 25; 35(8):109177. PubMed ID: 34038738
    [Abstract] [Full Text] [Related]

  • 10. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor.
    Hart AC, Sims S, Kaplan JM.
    Nature; 1995 Nov 02; 378(6552):82-5. PubMed ID: 7477294
    [Abstract] [Full Text] [Related]

  • 11. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans.
    Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV.
    Neuron; 2002 Dec 05; 36(5):933-44. PubMed ID: 12467596
    [Abstract] [Full Text] [Related]

  • 12. Multiple Sensory Inputs Are Extensively Integrated to Modulate Nociception in C. elegans.
    Summers PJ, Layne RM, Ortega AC, Harris GP, Bamber BA, Komuniecki RW.
    J Neurosci; 2015 Jul 15; 35(28):10331-42. PubMed ID: 26180208
    [Abstract] [Full Text] [Related]

  • 13. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor.
    Maricq AV, Peckol E, Driscoll M, Bargmann CI.
    Nature; 1995 Nov 02; 378(6552):78-81. PubMed ID: 7477293
    [Abstract] [Full Text] [Related]

  • 14. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y.
    Nat Commun; 2013 Nov 02; 4():2210. PubMed ID: 23887678
    [Abstract] [Full Text] [Related]

  • 15. GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans.
    Rose JK, Kaun KR, Chen SH, Rankin CH.
    J Neurosci; 2003 Oct 22; 23(29):9595-9. PubMed ID: 14573539
    [Abstract] [Full Text] [Related]

  • 16. The WD40-repeat proteins WDR-20 and WDR-48 bind and activate the deubiquitinating enzyme USP-46 to promote the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans.
    Dahlberg CL, Juo P.
    J Biol Chem; 2014 Feb 07; 289(6):3444-56. PubMed ID: 24356955
    [Abstract] [Full Text] [Related]

  • 17. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S, Tomioka M, Iino Y.
    J Neurophysiol; 2011 Jul 07; 106(1):301-8. PubMed ID: 21525368
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The transcription factor unc-130/FOXD3/4 contributes to the biphasic calcium response required to optimize avoidance behavior.
    Hori S, Mitani S.
    Sci Rep; 2022 Feb 03; 12(1):1907. PubMed ID: 35115609
    [Abstract] [Full Text] [Related]

  • 20. CDK-5 regulates the abundance of GLR-1 glutamate receptors in the ventral cord of Caenorhabditis elegans.
    Juo P, Harbaugh T, Garriga G, Kaplan JM.
    Mol Biol Cell; 2007 Oct 03; 18(10):3883-93. PubMed ID: 17671168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.