These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 30340561

  • 1. Comparison of a new swept-source optical biometer with a partial coherence interferometry.
    Lee HK, Kim MK.
    BMC Ophthalmol; 2018 Oct 19; 18(1):269. PubMed ID: 30340561
    [Abstract] [Full Text] [Related]

  • 2. Accuracy of swept-source optical coherence tomography based biometry for intraocular lens power calculation: a retrospective cross-sectional study.
    An Y, Kang EK, Kim H, Kang MJ, Byun YS, Joo CK.
    BMC Ophthalmol; 2019 Jan 24; 19(1):30. PubMed ID: 30678658
    [Abstract] [Full Text] [Related]

  • 3. Accuracy of a New Swept-Source Optical Coherence Tomography Biometer for IOL Power Calculation and Comparison to IOLMaster.
    Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P.
    J Refract Surg; 2017 Oct 01; 33(10):690-695. PubMed ID: 28991337
    [Abstract] [Full Text] [Related]

  • 4. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer.
    Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S.
    J Cataract Refract Surg; 2015 Oct 01; 41(10):2224-32. PubMed ID: 26703299
    [Abstract] [Full Text] [Related]

  • 5. Comparative Efficacy of the New Optical Biometer on Intraocular Lens Power Calculation (AL-Scan versus IOLMaster).
    Ha A, Wee WR, Kim MK.
    Korean J Ophthalmol; 2018 Jun 01; 32(3):241-248. PubMed ID: 29770644
    [Abstract] [Full Text] [Related]

  • 6. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard.
    Kaswin G, Rousseau A, Mgarrech M, Barreau E, Labetoulle M.
    J Cataract Refract Surg; 2014 Apr 01; 40(4):593-600. PubMed ID: 24680520
    [Abstract] [Full Text] [Related]

  • 7. Accuracy of SS-OCT biometry compared with partial coherence interferometry biometry for combined phacovitrectomy with internal limiting membrane peeling.
    Vounotrypidis E, Haralanova V, Muth DR, Wertheimer C, Shajari M, Wolf A, Priglinger S, Mayer WJ.
    J Cataract Refract Surg; 2019 Jan 01; 45(1):48-53. PubMed ID: 30309772
    [Abstract] [Full Text] [Related]

  • 8. Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation.
    Whang WJ, Yoo YS, Kang MJ, Joo CK.
    Sci Rep; 2018 Sep 13; 8(1):13732. PubMed ID: 30214016
    [Abstract] [Full Text] [Related]

  • 9. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry.
    Hoffer KJ, Hoffmann PC, Savini G.
    J Cataract Refract Surg; 2016 Aug 13; 42(8):1165-72. PubMed ID: 27531293
    [Abstract] [Full Text] [Related]

  • 10. Comparison of biometry and intraocular lens power calculation performed by a new optical biometry device and a reference biometer.
    Ventura BV, Ventura MC, Wang L, Koch DD, Weikert MP.
    J Cataract Refract Surg; 2017 Jan 13; 43(1):74-79. PubMed ID: 28317681
    [Abstract] [Full Text] [Related]

  • 11. Agreement Between Two Optical Biometers Based on Large Coherence Length SS-OCT and Scheimpflug Imaging/Partial Coherence Interferometry.
    Tu R, Yu J, Savini G, Ye J, Ning R, Xiong J, Chen S, Huang J.
    J Refract Surg; 2020 Jul 01; 36(7):459-465. PubMed ID: 32644168
    [Abstract] [Full Text] [Related]

  • 12. Refractive prediction of four different intraocular lens calculation formulas compared between new swept source optical coherence tomography and partial coherence interferometry.
    Song MY, Noh SR, Kim KY.
    PLoS One; 2021 Jul 01; 16(5):e0251152. PubMed ID: 33945581
    [Abstract] [Full Text] [Related]

  • 13. Comparative analysis of two optical biometry devices: high wavelength swept source OCT versus partial coherence interferometry.
    Szalai E, Csutak A.
    Int Ophthalmol; 2022 Feb 01; 42(2):627-634. PubMed ID: 34633606
    [Abstract] [Full Text] [Related]

  • 14. Comparison of 2 optical biometers and evaluation of the Camellin-Calossi intraocular lens formula for normal cataractous eyes.
    Suto C, Shimamura E, Watanabe I.
    J Cataract Refract Surg; 2015 Nov 01; 41(11):2366-72. PubMed ID: 26703484
    [Abstract] [Full Text] [Related]

  • 15. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry.
    Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J, Büehren T.
    J Cataract Refract Surg; 2016 Jan 01; 42(1):76-83. PubMed ID: 26948781
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer.
    Arriola-Villalobos P, Almendral-Gómez J, Garzón N, Ruiz-Medrano J, Fernández-Pérez C, Martínez-de-la-Casa JM, Díaz-Valle D.
    Eye (Lond); 2017 Mar 01; 31(3):437-442. PubMed ID: 27834962
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer.
    Muzyka-Woźniak M, Oleszko A.
    Int Ophthalmol; 2019 May 01; 39(5):1115-1122. PubMed ID: 29700651
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.