These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


340 related items for PubMed ID: 30343427

  • 1. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J, Park SH, Kim S, Kim SW, Hahn JS.
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [Abstract] [Full Text] [Related]

  • 2. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y.
    Microb Cell Fact; 2016 Jun 21; 15(1):113. PubMed ID: 27329233
    [Abstract] [Full Text] [Related]

  • 3. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
    Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ.
    Appl Environ Microbiol; 2007 Jul 21; 73(13):4342-50. PubMed ID: 17496128
    [Abstract] [Full Text] [Related]

  • 4. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction.
    Shi B, Ma T, Ye Z, Li X, Huang Y, Zhou Z, Ding Y, Deng Z, Liu T.
    J Agric Food Chem; 2019 Oct 09; 67(40):11148-11157. PubMed ID: 31532654
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.
    Xie W, Lv X, Ye L, Zhou P, Yu H.
    Metab Eng; 2015 Jul 09; 30():69-78. PubMed ID: 25959020
    [Abstract] [Full Text] [Related]

  • 7. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis.
    Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW.
    Appl Microbiol Biotechnol; 2007 Feb 09; 74(1):131-9. PubMed ID: 17115209
    [Abstract] [Full Text] [Related]

  • 8. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, Xia J, Nielsen J, Deng Z, Liu T.
    Metab Eng; 2019 Mar 09; 52():134-142. PubMed ID: 30471360
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. [Construction of Saccharomyces cerevisiae cell factories for lycopene production].
    Shi MY, Liu Yi, Wang D, Lu FP, Huang LQ, Dai ZB, Zhang XL.
    Zhongguo Zhong Yao Za Zhi; 2014 Oct 09; 39(20):3978-85. PubMed ID: 25751950
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae.
    Yuan J, Ching CB.
    Microb Cell Fact; 2015 Mar 18; 14():38. PubMed ID: 25889168
    [Abstract] [Full Text] [Related]

  • 14. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter.
    Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, Shokry AM, Sabir JS, Murata N.
    Plasmid; 2014 Mar 18; 72():18-28. PubMed ID: 24680933
    [Abstract] [Full Text] [Related]

  • 15. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S.
    Biotechnol Lett; 2016 Mar 18; 38(3):503-8. PubMed ID: 26614300
    [Abstract] [Full Text] [Related]

  • 16. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks.
    d'Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, Dev I, Nhan M, Gin J, Reider Apel A, Petzold CJ, Singh S, Simmons BA, Mukhopadhyay A, García Martín H, Keasling JD.
    Metab Eng; 2017 Jul 18; 42():115-125. PubMed ID: 28606738
    [Abstract] [Full Text] [Related]

  • 17. Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae.
    Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z.
    Appl Environ Microbiol; 2017 Jan 01; 83(1):. PubMed ID: 27793829
    [Abstract] [Full Text] [Related]

  • 18. [Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae].
    Sun L, Wang J, Jiang W, Li Y, Zhang L, Ding Z, Gu Z, Shi G, Xu S.
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul 25; 36(7):1334-1345. PubMed ID: 32748591
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.
    Kennedy MA, Barbuch R, Bard M.
    Biochim Biophys Acta; 1999 Apr 14; 1445(1):110-22. PubMed ID: 10209263
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.