These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
375 related items for PubMed ID: 30348375
41. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Li W, Hou T, Wu M, Li F. Talanta; 2016; 148():116-21. PubMed ID: 26653431 [Abstract] [Full Text] [Related]
42. Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR). Xu M, Ye J, Yang D, Abdullah Al-Maskri AA, Hu H, Jung C, Cai S, Zeng S. Anal Chim Acta; 2019 Oct 24; 1077():208-215. PubMed ID: 31307711 [Abstract] [Full Text] [Related]
43. Label-free fluorometric detection of microRNA using isothermal rolling circle amplification generating tandem G-quadruplex. Kim M, Kim DM, Kim DE. Analyst; 2020 Sep 14; 145(18):6130-6137. PubMed ID: 32869779 [Abstract] [Full Text] [Related]
44. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. Nanomedicine; 2021 Feb 14; 32():102339. PubMed ID: 33227538 [Abstract] [Full Text] [Related]
45. Homogeneous and label-free fluorescence detection of single-nucleotide polymorphism using target-primed branched rolling circle amplification. Cheng Y, Li Z, Zhang X, Du B, Fan Y. Anal Biochem; 2008 Jul 15; 378(2):123-6. PubMed ID: 18420020 [Abstract] [Full Text] [Related]
46. Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification. Hong C, Zhang X, Ye S, Yang H, Huang Z, Yang D, Cai R, Tan W. ACS Appl Mater Interfaces; 2021 May 05; 13(17):19695-19700. PubMed ID: 33881296 [Abstract] [Full Text] [Related]
47. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Xie J, Chen J, Zhang Y, Li C, Liu P, Duan WJ, Chen JX, Chen J, Dai Z, Li M. Talanta; 2024 May 15; 272():125747. PubMed ID: 38364557 [Abstract] [Full Text] [Related]
48. Palindrome-Embedded Hairpin Structure and Its Target-Catalyzed Padlock Cyclization for Label-Free MicroRNA-Initiated Rolling Circle Amplification. Zeng H, Zhou H, Lin J, Pang Q, Chen S, Lin S, Xue C, Shen Z. ACS Omega; 2023 Jan 17; 8(2):2253-2261. PubMed ID: 36687024 [Abstract] [Full Text] [Related]
49. Detecting miRNA by producing RNA: a sensitive assay that combines rolling-circle DNA polymerization and rolling circle transcription. Li X, Zheng F, Ren R. Chem Commun (Camb); 2015 Aug 04; 51(60):11976-9. PubMed ID: 26120604 [Abstract] [Full Text] [Related]
50. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection. Li C, Qiu X, Hou Z, Deng K. Biosens Bioelectron; 2015 Feb 15; 64():505-10. PubMed ID: 25299987 [Abstract] [Full Text] [Related]
51. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Wu ZS, Zhang S, Zhou H, Shen GL, Yu R. Anal Chem; 2010 Mar 15; 82(6):2221-7. PubMed ID: 20151715 [Abstract] [Full Text] [Related]
52. Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification. Fan T, Mao Y, Liu F, Zhang W, Lin JS, Yin J, Tan Y, Huang X, Jiang Y. Talanta; 2019 Aug 01; 200():480-486. PubMed ID: 31036212 [Abstract] [Full Text] [Related]
53. A universal fluorescence biosensor based on rolling circle amplification and locking probe for DNA detection. Fang Y, Nie L, Wang S, Liu S, Li H, Yu R. Mikrochim Acta; 2024 Jul 01; 191(7):437. PubMed ID: 38951284 [Abstract] [Full Text] [Related]
54. Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA). Yan J, Hu C, Wang P, Liu R, Zuo X, Liu X, Song S, Fan C, He D, Sun G. ACS Appl Mater Interfaces; 2014 Nov 26; 6(22):20372-7. PubMed ID: 25323204 [Abstract] [Full Text] [Related]
55. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification. Ma C, Liu S, Shi C. Biosens Bioelectron; 2014 Aug 15; 58():57-60. PubMed ID: 24613970 [Abstract] [Full Text] [Related]
56. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers. Huang JF, Zhao N, Xu HQ, Xia H, Wei K, Fu WL, Huang Q. Anal Bioanal Chem; 2016 Oct 15; 408(26):7437-46. PubMed ID: 27485624 [Abstract] [Full Text] [Related]
57. A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Zhou Y, Huang Q, Gao J, Lu J, Shen X, Fan C. Nucleic Acids Res; 2010 Aug 15; 38(15):e156. PubMed ID: 20547593 [Abstract] [Full Text] [Related]
58. Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Li CC, Hu J, Zou X, Luo X, Zhang CY. Anal Chem; 2022 Jan 25; 94(3):1882-1889. PubMed ID: 35000391 [Abstract] [Full Text] [Related]
59. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P. Le BH, Seo YJ. Bioorg Med Chem Lett; 2018 Jun 15; 28(11):2035-2038. PubMed ID: 29709251 [Abstract] [Full Text] [Related]
60. Label-free detection of microRNA based on coupling multiple isothermal amplification techniques. Zheng X, Niu L, Wei D, Li X, Zhang S. Sci Rep; 2016 Oct 25; 6():35982. PubMed ID: 27777399 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]