These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
375 related items for PubMed ID: 30348375
61. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy. Yang Z, Guo Y, Zhou J, Liu F, Liang W, Chai Y, Li Z, Yuan R. Anal Chem; 2022 Nov 22; 94(46):16237-16245. PubMed ID: 36346897 [Abstract] [Full Text] [Related]
62. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue Q, Lv Y, Cui H, Gu X, Zhang S, Liu J. Anal Chim Acta; 2015 Jan 26; 856():103-9. PubMed ID: 25542364 [Abstract] [Full Text] [Related]
63. Efficient and Exponential Rolling Circle Amplification Molecular Network Leads to Ultrasensitive and Label-Free Detection of MicroRNA. Li D, Zhang T, Yang F, Yuan R, Xiang Y. Anal Chem; 2020 Jan 21; 92(2):2074-2079. PubMed ID: 31884785 [Abstract] [Full Text] [Related]
64. Label-Free and Multiplexed Quantification of microRNAs by Mass Spectrometry Based on Duplex-Specific-Nuclease-Assisted Recycling Amplification. Shi CX, Li SX, Chen ZP, Liu Q, Yu RQ. Anal Chem; 2019 Feb 05; 91(3):2120-2127. PubMed ID: 30585725 [Abstract] [Full Text] [Related]
65. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells. Ge J, Zhang LL, Liu SJ, Yu RQ, Chu X. Anal Chem; 2014 Feb 04; 86(3):1808-15. PubMed ID: 24417222 [Abstract] [Full Text] [Related]
67. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification. Dong H, Meng X, Dai W, Cao Y, Lu H, Zhou S, Zhang X. Anal Chem; 2015 Apr 21; 87(8):4334-40. PubMed ID: 25830473 [Abstract] [Full Text] [Related]
68. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. Zhang Q, Chen F, Xu F, Zhao Y, Fan C. Anal Chem; 2014 Aug 19; 86(16):8098-105. PubMed ID: 25072308 [Abstract] [Full Text] [Related]
69. Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA. Wang L, Zeng H, Yang X, Chen C, Ou S. Mikrochim Acta; 2021 May 29; 188(6):214. PubMed ID: 34052953 [Abstract] [Full Text] [Related]
70. Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Li R, Liu Q, Jin Y, Li B. Mikrochim Acta; 2020 Jan 18; 187(2):139. PubMed ID: 31955247 [Abstract] [Full Text] [Related]
71. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Li C, Wang Y, Li PF, Fu Q. Acta Biomater; 2023 Apr 01; 160():1-13. PubMed ID: 36764595 [Abstract] [Full Text] [Related]
72. Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification. Li X, Song J, Xue Q, Zhao H, Liu M, Chen B, Liu Y, Jiang W, Li CZ. Analyst; 2017 Oct 07; 142(19):3598-3604. PubMed ID: 28891579 [Abstract] [Full Text] [Related]
73. Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS2 Quantum Dots. Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W. Anal Chem; 2020 Oct 06; 92(19):13588-13594. PubMed ID: 32894943 [Abstract] [Full Text] [Related]
74. A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide. Meng YR, Zhang D, Zou X, Ma F, Kang Q, Zhang CY. Talanta; 2021 Mar 01; 224():121962. PubMed ID: 33379129 [Abstract] [Full Text] [Related]
75. Palindromic probe-mediated strand displacement amplification for highly sensitive and selective microRNA imaging. Xu H, Niu H, Liu J, Zhang Y, Yin H, Liu D, Jiang Z, Yu S, Wu ZS. Talanta; 2020 Nov 01; 219():121295. PubMed ID: 32887037 [Abstract] [Full Text] [Related]
76. Three-Way Junction-Assisted Rolling Circle Amplification Integrated with trans-Cleavage of Cas12a for Sensitive and Reliable Detection of miRNA. Wu Z, Zhao S. Appl Biochem Biotechnol; 2024 Jun 01; 196(6):3115-3125. PubMed ID: 37624508 [Abstract] [Full Text] [Related]
77. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, Jiang JH. Anal Chem; 2014 Feb 04; 86(3):1361-5. PubMed ID: 24446758 [Abstract] [Full Text] [Related]
78. Rolling-circle amplification: unshared advantages in miRNA detection. Neubacher S, Arenz C. Chembiochem; 2009 May 25; 10(8):1289-91. PubMed ID: 19373796 [Abstract] [Full Text] [Related]
79. Highly sensitive and specific electrochemical biosensor for microRNA-21 detection by coupling catalytic hairpin assembly with rolling circle amplification. Li Q, Zeng F, Lyu N, Liang J. Analyst; 2018 May 15; 143(10):2304-2309. PubMed ID: 29675521 [Abstract] [Full Text] [Related]
80. Dual-Signal Amplification Strategy for Sensitive MicroRNA Detection Based on Rolling Circle Amplification and Enzymatic Repairing Amplification. Xiao F, Liu J, Guo Q, Du Z, Li H, Sun C, Du W. ACS Omega; 2020 Dec 22; 5(50):32738-32743. PubMed ID: 33376911 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]