These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


375 related items for PubMed ID: 30348375

  • 81. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K, Wang K, Zhu X, Xu F, Xie M.
    Biosens Bioelectron; 2017 Jan 15; 87():358-364. PubMed ID: 27589398
    [Abstract] [Full Text] [Related]

  • 82. Exponential strand-displacement amplification for detection of microRNAs.
    Shi C, Liu Q, Ma C, Zhong W.
    Anal Chem; 2014 Jan 07; 86(1):336-9. PubMed ID: 24345199
    [Abstract] [Full Text] [Related]

  • 83. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification.
    Lee CY, Kang KS, Park KS, Park HG.
    Mikrochim Acta; 2017 Dec 14; 185(1):53. PubMed ID: 29594533
    [Abstract] [Full Text] [Related]

  • 84.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 85.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 86. Highly sensitive, selective, and rapid detection of miRNA-21 using an RCA/G-quadruplex/QnDESA probing system.
    Asa TA, Ravi Kumara GS, Seo YJ.
    Anal Methods; 2022 Jan 06; 14(2):97-100. PubMed ID: 34918721
    [Abstract] [Full Text] [Related]

  • 87. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization.
    Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, Tang D.
    Biosens Bioelectron; 2017 Jan 15; 87():18-24. PubMed ID: 27504793
    [Abstract] [Full Text] [Related]

  • 88. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA.
    Liu H, Li L, Wang Q, Duan L, Tang B.
    Anal Chem; 2014 Jun 03; 86(11):5487-93. PubMed ID: 24823448
    [Abstract] [Full Text] [Related]

  • 89. Palindromic molecular beacon-based intramolecular strand-displacement amplification strategy for ultrasensitive detection of K-ras gene.
    Li H, Tang Y, Zhao W, Wu Z, Wang S, Yu R.
    Anal Chim Acta; 2019 Aug 13; 1065():98-106. PubMed ID: 31005156
    [Abstract] [Full Text] [Related]

  • 90. DNAzyme-Based Target-Triggered Rolling-Circle Amplification for High Sensitivity Detection of microRNAs.
    Liu C, Han J, Zhou L, Zhang J, Du J.
    Sensors (Basel); 2020 Apr 03; 20(7):. PubMed ID: 32260285
    [Abstract] [Full Text] [Related]

  • 91. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.
    Hong CA, Jang B, Jeong EH, Jeong H, Lee H.
    Chem Commun (Camb); 2014 Nov 07; 50(86):13049-51. PubMed ID: 24967959
    [Abstract] [Full Text] [Related]

  • 92.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 93. Specific discrimination and universal signal amplification for RNA detection by coupling toehold exchange with RCA through nucleolytic conversion of a structure-switched hairpin probe.
    Yu W, Li J, Zuo C, Tao Y, Bai S, Li J, Zhang Z, Xie G.
    Anal Chim Acta; 2019 Aug 30; 1068():96-103. PubMed ID: 31072482
    [Abstract] [Full Text] [Related]

  • 94. Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease.
    Yin BC, Liu YQ, Ye BC.
    Anal Chem; 2013 Dec 03; 85(23):11487-93. PubMed ID: 24195675
    [Abstract] [Full Text] [Related]

  • 95. Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification.
    Wang Z, Zong S, Liu Y, Qian Z, Zhu K, Yang Z, Wang Z, Cui Y.
    Nanotechnology; 2021 Feb 19; 32(8):085504. PubMed ID: 33152726
    [Abstract] [Full Text] [Related]

  • 96. Periodically programmed building and collapse of DNA networks enables an ultrahigh signal amplification effect for ultrasensitive nucleic acids analysis.
    Xu J, Wang X, Zhang X, Yao L, Qin P, Lu Y, Chen Y, Zhang Y, Yan Y, Chen W.
    Anal Chim Acta; 2021 Mar 15; 1150():338221. PubMed ID: 33583542
    [Abstract] [Full Text] [Related]

  • 97. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E, Hölzel R, Bier FF.
    Methods Mol Biol; 2011 Mar 15; 749():151-68. PubMed ID: 21674371
    [Abstract] [Full Text] [Related]

  • 98. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z, Zhang H, Wang F, Zhang G, Zhou T, Wang X, Liu S, Liu T.
    Macromol Rapid Commun; 2018 Aug 15; 39(15):e1800263. PubMed ID: 29952041
    [Abstract] [Full Text] [Related]

  • 99. A Universal Strategy for Enhancing the Circulating miRNAs' Detection Performance of Rolling Circle Amplification by Using a Dual-Terminal Stem-Loop Padlock.
    Xu H, Wu X, Liu Q, Yang C, Shen M, Wang Y, Liu S, Zhao S, Xiao T, Sun M, Ding Z, Bao J, Chen M, Gao M.
    ACS Nano; 2024 Jan 09; 18(1):436-450. PubMed ID: 38149638
    [Abstract] [Full Text] [Related]

  • 100. A microRNA detection system based on padlock probes and rolling circle amplification.
    Jonstrup SP, Koch J, Kjems J.
    RNA; 2006 Sep 09; 12(9):1747-52. PubMed ID: 16888321
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.