These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
375 related items for PubMed ID: 30348375
101. Rolling cycle amplification based single-color quantum dots-ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA. Su C, Liu Y, Ye T, Xiang X, Ji X, He Z. Anal Chim Acta; 2015 Jan 01; 853():495-500. PubMed ID: 25467495 [Abstract] [Full Text] [Related]
102. Sensitive detection of formamidopyrimidine-DNA glycosylase activity based on target-induced self-primed rolling circle amplification and magnetic nanoprobes. Song J, Yin F, Li X, Dong N, Zhu Y, Shao Y, Chen B, Jiang W, Li CZ. Analyst; 2018 Mar 26; 143(7):1593-1598. PubMed ID: 29517783 [Abstract] [Full Text] [Related]
103. Accurate Detection of Target MicroRNA in Mixed Species of High Sequence Homology Using Target-Protection Rolling Circle Amplification. Zhang B, Li S, Guan Y, Yuan Y. ACS Omega; 2021 Jan 19; 6(2):1516-1522. PubMed ID: 33490811 [Abstract] [Full Text] [Related]
104. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction. Liu Y, Zhang J, Tian J, Fan X, Geng H, Cheng Y. Anal Bioanal Chem; 2017 Jan 19; 409(1):107-114. PubMed ID: 27815611 [Abstract] [Full Text] [Related]
105. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA. Wang B, You Z, Ren D. Analyst; 2019 Mar 25; 144(7):2304-2311. PubMed ID: 30672513 [Abstract] [Full Text] [Related]
106. Chemiluminescence detection of DNA/microRNA based on cation-exchange of CuS nanoparticles and rolling circle amplification. Zhang X, Liu H, Li R, Zhang N, Xiong Y, Niu S. Chem Commun (Camb); 2015 Apr 25; 51(32):6952-5. PubMed ID: 25797586 [Abstract] [Full Text] [Related]
107. Label-Free Telomerase Detection in Single Cell Using a Five-Base Telomerase Product-Triggered Exponential Rolling Circle Amplification Strategy. Li X, Cui Y, Du Y, Tang A, Kong D. ACS Sens; 2019 Apr 26; 4(4):1090-1096. PubMed ID: 30945529 [Abstract] [Full Text] [Related]
108. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Angew Chem Int Ed Engl; 2009 Apr 26; 48(18):3268-72. PubMed ID: 19219883 [Abstract] [Full Text] [Related]
109. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications. Xu Y, Lv Z, Yao C, Yang D. Biomater Sci; 2022 Jun 14; 10(12):3054-3061. PubMed ID: 35535967 [Abstract] [Full Text] [Related]
110. Self-primed isothermal amplification for genomic DNA detection of human papillomavirus. Lu W, Yuan Q, Yang Z, Yao B. Biosens Bioelectron; 2017 Apr 15; 90():258-263. PubMed ID: 27915180 [Abstract] [Full Text] [Related]
111. Synthesis and stretching of rolling circle amplification products in a flow-through system. Reiss E, Hölzel R, Bier FF. Small; 2009 Oct 15; 5(20):2316-22. PubMed ID: 19492351 [Abstract] [Full Text] [Related]
112. Highly sensitive and multiplexed miRNA analysis based on digitally encoded silica microparticles coupled with RCA-based cascade amplification. Liu S, Fang H, Sun C, Wang N, Li J. Analyst; 2018 Oct 22; 143(21):5137-5144. PubMed ID: 30246192 [Abstract] [Full Text] [Related]
113. Dual channel sensitive detection of hsa-miR-21 based on rolling circle amplification and quantum dots tagging. Wangt DC, Hu LH, Zhou YH, Huang YT, Li X, Zhu JJ. J Biomed Nanotechnol; 2014 Apr 22; 10(4):615-21. PubMed ID: 24734513 [Abstract] [Full Text] [Related]
114. Ligase chain reaction coupled with rolling circle amplification for high sensitivity detection of single nucleotide polymorphisms. Cheng Y, Zhao J, Jia H, Yuan Z, Li Z. Analyst; 2013 May 21; 138(10):2958-63. PubMed ID: 23535938 [Abstract] [Full Text] [Related]
115. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Li D, Cheng W, Yan Y, Zhang Y, Yin Y, Ju H, Ding S. Talanta; 2016 May 21; 146():470-6. PubMed ID: 26695292 [Abstract] [Full Text] [Related]
116. Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor. Khoothiam K, Treerattrakoon K, Iempridee T, Luksirikul P, Dharakul T, Japrung D. Analyst; 2019 Jul 08; 144(14):4180-4187. PubMed ID: 31123738 [Abstract] [Full Text] [Related]
117. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells. Cai X, Zhang H, Yu X, Wang W. Talanta; 2020 Aug 15; 216():120996. PubMed ID: 32456922 [Abstract] [Full Text] [Related]
119. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z, Qing Z, He X, Wang K, He D, Shi H, Yang X, Qing T, Yang X. Talanta; 2014 Jul 15; 125():306-12. PubMed ID: 24840448 [Abstract] [Full Text] [Related]
120. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene. Xu H, Jiang Y, Liu D, Liu K, Zhang Y, Yu S, Shen Z, Wu ZS. Anal Chim Acta; 2018 Jun 29; 1011():86-93. PubMed ID: 29475489 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]