These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 30350152
1. The effect of fly ash on sunflower growth and human health. Oncioiu I, Grecu E, Mâşu S, Morariu F, Popa M. Environ Sci Pollut Res Int; 2018 Dec; 25(35):35548-35554. PubMed ID: 30350152 [Abstract] [Full Text] [Related]
2. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Singh JS, Pandey VC. Ecotoxicol Environ Saf; 2013 Mar; 89():43-51. PubMed ID: 23260239 [Abstract] [Full Text] [Related]
3. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. Li J, Zhuang X, Font O, Moreno N, Vallejo VR, Querol X, Tobias A. J Hazard Mater; 2014 Jan 30; 265():242-52. PubMed ID: 24365875 [Abstract] [Full Text] [Related]
4. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Rautaray SK, Ghosh BC, Mittra BN. Bioresour Technol; 2003 Dec 30; 90(3):275-83. PubMed ID: 14575950 [Abstract] [Full Text] [Related]
5. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Belhaj D, Elloumi N, Jerbi B, Zouari M, Abdallah FB, Ayadi H, Kallel M. Environ Sci Pollut Res Int; 2016 Oct 30; 23(20):20168-20177. PubMed ID: 27430654 [Abstract] [Full Text] [Related]
6. Arbuscular mycorrhizas amplify the risk of heavy metal transfer to human food chain from fly ash ameliorated agricultural soils. Goswami V, Deepika S, Diwakar S, Kothamasi D. Environ Pollut; 2023 Jul 15; 329():121733. PubMed ID: 37119999 [Abstract] [Full Text] [Related]
7. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. da Rosa Couto R, Faversani J, Ceretta CA, Ferreira PAA, Marchezan C, Basso Facco D, Garlet LP, Silva JS, Comin JJ, Bizzi CA, Flores EMM, Brunetto G. Ecotoxicol Environ Saf; 2018 May 30; 153():142-150. PubMed ID: 29425845 [Abstract] [Full Text] [Related]
8. Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Rocco C, Seshadri B, Adamo P, Bolan NS, Mbene K, Naidu R. Environ Sci Pollut Res Int; 2018 Sep 30; 25(26):25896-25905. PubMed ID: 29961222 [Abstract] [Full Text] [Related]
9. Opportunities and challenges in the use of coal fly ash for soil improvements--a review. Shaheen SM, Hooda PS, Tsadilas CD. J Environ Manage; 2014 Dec 01; 145():249-67. PubMed ID: 25079682 [Abstract] [Full Text] [Related]
10. The fly ash influenced the heavy metal status of the soil and the seeds of sunflower. A case study. Siddiqui S, Ahmad A, Hayat S. J Environ Biol; 2004 Jan 01; 25(1):59-63. PubMed ID: 15303705 [Abstract] [Full Text] [Related]
11. Managing metolachlor and atrazine leaching losses using lignite fly ash. Ghosh RK, Singh N. Ecotoxicol Environ Saf; 2012 Oct 01; 84():243-8. PubMed ID: 22854744 [Abstract] [Full Text] [Related]
12. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil. Mollon LC, Norton GJ, Trakal L, Moreno-Jimenez E, Elouali FZ, Hough RL, Beesley L. Environ Pollut; 2016 Nov 01; 218():419-427. PubMed ID: 27440517 [Abstract] [Full Text] [Related]
13. Fly ash toxicity, emerging issues and possible implications for its exploitation in agriculture; Indian scenario: A review. Jambhulkar HP, Shaikh SMS, Kumar MS. Chemosphere; 2018 Dec 01; 213():333-344. PubMed ID: 30241077 [Abstract] [Full Text] [Related]
14. Management of lignite fly ash for improving soil fertility and crop productivity. Ram LC, Srivastava NK, Jha SK, Sinha AK, Masto RE, Selvi VA. Environ Manage; 2007 Sep 01; 40(3):438-52. PubMed ID: 17705037 [Abstract] [Full Text] [Related]
15. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers. López-Valdez F, Fernández-Luqueño F, Luna-Suárez S, Dendooven L. Sci Total Environ; 2011 Dec 15; 412-413():257-64. PubMed ID: 22033361 [Abstract] [Full Text] [Related]
16. Residual effects of applied chemical fertilisers on growth and seed yields of sunflower (Helianthus annuus cv. high sun 33) after the harvests of initial main crops of maize (Zea mays L.), soybean (Glycine max L.) and sunflower (Helianthus annuus). Srisa-ard K. Pak J Biol Sci; 2007 Mar 15; 10(6):959-63. PubMed ID: 19069898 [Abstract] [Full Text] [Related]
17. Elements availability in soil fertilized with pelletized fly ash and biosolids. Brännvall E, Wolters M, Sjöblom R, Kumpiene J. J Environ Manage; 2015 Aug 15; 159():27-36. PubMed ID: 26042629 [Abstract] [Full Text] [Related]
18. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Qiutong X, Mingkui Z. Ecotoxicol Environ Saf; 2017 Aug 15; 142():410-416. PubMed ID: 28454053 [Abstract] [Full Text] [Related]
19. Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants. Raja R, Nayak AK, Shukla AK, Rao KS, Gautam P, Lal B, Tripathi R, Shahid M, Panda BB, Kumar A, Bhattacharyya P, Bardhan G, Gupta S, Patra DK. Environ Monit Assess; 2015 Nov 15; 187(11):679. PubMed ID: 26450689 [Abstract] [Full Text] [Related]
20. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture. Flores CG, Schneider H, Marcilio NR, Ferret L, Oliveira JCP. Waste Manag; 2017 Dec 15; 70():263-271. PubMed ID: 28917826 [Abstract] [Full Text] [Related] Page: [Next] [New Search]