These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 30350595
1. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. Wang Y, Yu Y, Liu Y, Yang S. ACS Sens; 2018 Nov 26; 3(11):2343-2350. PubMed ID: 30350595 [Abstract] [Full Text] [Related]
2. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Gu X, Yan Y, Jiang G, Adkins J, Shi J, Jiang G, Tian S. Anal Bioanal Chem; 2014 Mar 26; 406(7):1885-94. PubMed ID: 24577570 [Abstract] [Full Text] [Related]
3. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Zhang Y, Walkenfort B, Yoon JH, Schlücker S, Xie W. Phys Chem Chem Phys; 2015 Sep 07; 17(33):21120-6. PubMed ID: 25491599 [Abstract] [Full Text] [Related]
4. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y, Tapio K, Wegner G, Kogikoski S, Rüstig S, Prietzel C, Busch K, Bald I. ACS Nano; 2023 Nov 14; 17(21):21227-21239. PubMed ID: 37847540 [Abstract] [Full Text] [Related]
5. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D. Talanta; 2019 Jun 01; 198():45-54. PubMed ID: 30876586 [Abstract] [Full Text] [Related]
6. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Potara M, Baia M, Farcau C, Astilean S. Nanotechnology; 2012 Feb 10; 23(5):055501. PubMed ID: 22236478 [Abstract] [Full Text] [Related]
7. Shape control of Ag nanostructures for practical SERS substrates. Jeon TY, Park SG, Lee SY, Jeon HC, Yang SM. ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):243-8. PubMed ID: 23281631 [Abstract] [Full Text] [Related]
8. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Chen B, Meng G, Zhou F, Huang Q, Zhu C, Hu X, Kong M. Nanotechnology; 2014 Apr 11; 25(14):145605. PubMed ID: 24633265 [Abstract] [Full Text] [Related]
9. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q, Large N, Wang H. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):17255-67. PubMed ID: 25222940 [Abstract] [Full Text] [Related]
10. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M, Wang Y, Sun X, Wang W, Chen L. ACS Appl Mater Interfaces; 2015 Apr 15; 7(14):7516-25. PubMed ID: 25815901 [Abstract] [Full Text] [Related]
11. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P. Talanta; 2014 Jun 15; 123():161-8. PubMed ID: 24725879 [Abstract] [Full Text] [Related]
12. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C, Wu X, Dong P, Chen J, Xiao R. Biosens Bioelectron; 2016 Dec 15; 86():944-950. PubMed ID: 27498319 [Abstract] [Full Text] [Related]
13. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Chen M, Zhang L, Gao M, Zhang X. Talanta; 2017 Sep 01; 172():176-181. PubMed ID: 28602292 [Abstract] [Full Text] [Related]
15. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K, Ji J, Li Y, Liu B. Anal Chem; 2014 Jul 01; 86(13):6660-5. PubMed ID: 24915488 [Abstract] [Full Text] [Related]
16. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
17. Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance. Wei H, McCarthy A, Song J, Zhou W, Vikesland PJ. Faraday Discuss; 2017 Dec 04; 205():491-504. PubMed ID: 28926064 [Abstract] [Full Text] [Related]
18. Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Hou C, Meng G, Huang Q, Zhu C, Huang Z, Chen B, Sun K. Chem Commun (Camb); 2014 Jan 18; 50(5):569-71. PubMed ID: 24270752 [Abstract] [Full Text] [Related]
19. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Anal Chim Acta; 2013 Dec 17; 805():95-100. PubMed ID: 24296148 [Abstract] [Full Text] [Related]
20. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S. Anal Chem; 2015 Jan 06; 87(1):663-9. PubMed ID: 25494815 [Abstract] [Full Text] [Related] Page: [Next] [New Search]