These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
340 related items for PubMed ID: 30352435
1. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus. Wijesinghe G, Dilhari A, Gayani B, Kottegoda N, Samaranayake L, Weerasekera M. Med Princ Pract; 2019; 28(1):28-35. PubMed ID: 30352435 [Abstract] [Full Text] [Related]
2. Coculture of P. aeruginosa and S. aureus on cell derived matrix - An in vitro model of biofilms in infected wounds. Gounani Z, Şen Karaman D, Venu AP, Cheng F, Rosenholm JM. J Microbiol Methods; 2020 Aug; 175():105994. PubMed ID: 32593628 [Abstract] [Full Text] [Related]
3. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus. Chew SC, Yam JKH, Matysik A, Seng ZJ, Klebensberger J, Givskov M, Doyle P, Rice SA, Yang L, Kjelleberg S. mBio; 2018 Nov 06; 9(6):. PubMed ID: 30401769 [Abstract] [Full Text] [Related]
4. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Hou W, Sun X, Wang Z, Zhang Y. Invest Ophthalmol Vis Sci; 2012 Aug 17; 53(9):5624-31. PubMed ID: 22736609 [Abstract] [Full Text] [Related]
5. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald PJ. PLoS One; 2015 Aug 17; 10(6):e0131806. PubMed ID: 26125555 [Abstract] [Full Text] [Related]
6. Efficacy of Lytic Phage Cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in Mixed-Species Planktonic Cultures and Biofilms. Kifelew LG, Warner MS, Morales S, Thomas N, Gordon DL, Mitchell JG, Speck PG. Viruses; 2020 May 18; 12(5):. PubMed ID: 32443619 [Abstract] [Full Text] [Related]
7. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. Sci Rep; 2019 Nov 08; 9(1):16284. PubMed ID: 31705015 [Abstract] [Full Text] [Related]
8. Prevention of biofilm formation by polyquaternary polymer. Dirain CO, Silva RC, Antonelli PJ. Int J Pediatr Otorhinolaryngol; 2016 Sep 08; 88():157-62. PubMed ID: 27497405 [Abstract] [Full Text] [Related]
9. The antimicrobial agent, Next-Science, inhibits the development of Staphylococcus aureus and Pseudomonas aeruginosa biofilms on tympanostomy tubes. Banerjee D, Tran PL, Colmer-Hamood JA, Wang JC, Myntti M, Cordero J, Hamood AN. Int J Pediatr Otorhinolaryngol; 2015 Nov 08; 79(11):1909-14. PubMed ID: 26388185 [Abstract] [Full Text] [Related]
10. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. Lopes SP, Machado I, Pereira MO. J Ind Microbiol Biotechnol; 2011 Jan 08; 38(1):133-40. PubMed ID: 20811926 [Abstract] [Full Text] [Related]
11. Quantitative flow chamber system for evaluating in vitro biofilms and the kinetics of S. aureus biofilm formation in human plasma media. Sutipornpalangkul W, Nishitani K, Schwarz EM. BMC Microbiol; 2021 Nov 11; 21(1):314. PubMed ID: 34763655 [Abstract] [Full Text] [Related]
12. Pseudomonas aeruginosa Alters Staphylococcus aureus Sensitivity to Vancomycin in a Biofilm Model of Cystic Fibrosis Infection. Orazi G, O'Toole GA. mBio; 2017 Jul 18; 8(4):. PubMed ID: 28720732 [Abstract] [Full Text] [Related]
13. In vitro multispecies Lubbock chronic wound biofilm model. Sun Y, Dowd SE, Smith E, Rhoads DD, Wolcott RD. Wound Repair Regen; 2008 Jul 18; 16(6):805-13. PubMed ID: 19128252 [Abstract] [Full Text] [Related]
15. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow. Kasetty S, Mould DL, Hogan DA, Nadell CD. mSphere; 2021 Jun 30; 6(3):e0041621. PubMed ID: 34160236 [Abstract] [Full Text] [Related]
16. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01. Solihin J, Waturangi DE, Purwadaria T. BMC Microbiol; 2021 Aug 23; 21(1):232. PubMed ID: 34425755 [Abstract] [Full Text] [Related]
17. [Influence of Chlorhexidine and Prontosan on Dual Species and Monospecies Biofilms Formed by Staphylococcus aureus and Pseudomonas aeruginosa]. Kuznetsova MV, Encheva YA, Samartsev VA. Antibiot Khimioter; 2015 Aug 23; 60(11-12):15-22. PubMed ID: 27141642 [Abstract] [Full Text] [Related]
18. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium. Haley CL, Colmer-Hamood JA, Hamood AN. BMC Microbiol; 2012 Aug 18; 12():181. PubMed ID: 22900764 [Abstract] [Full Text] [Related]
19. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. Pathog Dis; 2018 Feb 01; 76(1):. PubMed ID: 29342260 [Abstract] [Full Text] [Related]
20. [Evaluation of biofilm formation by Staphylococcus aureus isolated from sputum of cystic fibrosis patients]. Pietruczuk-Padzik A, Stefańska J, Semczuk K, Dzierzanowska D, Tyski S. Med Dosw Mikrobiol; 2010 Feb 01; 62(1):1-8. PubMed ID: 20564965 [Abstract] [Full Text] [Related] Page: [Next] [New Search]