These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 30354914

  • 1. Muscle force strategies for poststroke hemiparetic patients during gait.
    Souissi H, Zory R, Boudarham J, Pradon D, Roche N, Gerus P.
    Top Stroke Rehabil; 2019 Jan; 26(1):58-65. PubMed ID: 30354914
    [Abstract] [Full Text] [Related]

  • 2. Altered post-stroke propulsion is related to paretic swing phase kinematics.
    Dean JC, Bowden MG, Kelly AL, Kautz SA.
    Clin Biomech (Bristol); 2020 Feb; 72():24-30. PubMed ID: 31809919
    [Abstract] [Full Text] [Related]

  • 3. Co-contraction around the knee and the ankle joints during post-stroke gait.
    Souissi H, Zory R, Bredin J, Roche N, Gerus P.
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):380-387. PubMed ID: 28849896
    [Abstract] [Full Text] [Related]

  • 4. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 5. Gait Impairments in Patients Without Lower Limb Hypertonia Early Poststroke Are Related to Weakness of Paretic Knee Flexors.
    Chow JW, Stokic DS.
    Arch Phys Med Rehabil; 2019 Jun; 100(6):1091-1101. PubMed ID: 30447195
    [Abstract] [Full Text] [Related]

  • 6. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ, Neptune RR, Kautz SA.
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [Abstract] [Full Text] [Related]

  • 7. Altered muscle synergy structure in patients with poststroke stiff knee gait.
    Fujita K, Tsushima Y, Hayashi K, Kawabata K, Ogawa T, Hori H, Kobayashi Y.
    Sci Rep; 2024 Aug 31; 14(1):20295. PubMed ID: 39217201
    [Abstract] [Full Text] [Related]

  • 8. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns.
    Raja B, Neptune RR, Kautz SA.
    Clin Biomech (Bristol); 2012 Dec 31; 27(10):1023-30. PubMed ID: 22981679
    [Abstract] [Full Text] [Related]

  • 9. Residual Deficits of Knee Flexors and Plantar Flexors Predict Normalized Walking Performance in Patients with Poststroke Hemiplegia.
    Ozgozen S, Guzel R, Basaran S, Coskun Benlidayi I.
    J Stroke Cerebrovasc Dis; 2020 Apr 31; 29(4):104658. PubMed ID: 32037268
    [Abstract] [Full Text] [Related]

  • 10. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.
    Hsu CJ, Kim J, Roth EJ, Rymer WZ, Wu M.
    Neurorehabil Neural Repair; 2017 Dec 31; 31(12):1042-1052. PubMed ID: 29145773
    [Abstract] [Full Text] [Related]

  • 11. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke.
    Tesio L, Rota V, Malloggi C, Brugliera L, Catino L.
    Int J Rehabil Res; 2017 Sep 31; 40(3):254-267. PubMed ID: 28574860
    [Abstract] [Full Text] [Related]

  • 12. Changes in the activation and function of the ankle plantar flexor muscles due to gait retraining in chronic stroke survivors.
    Knarr BA, Kesar TM, Reisman DS, Binder-Macleod SA, Higginson JS.
    J Neuroeng Rehabil; 2013 Jan 31; 10():12. PubMed ID: 23369530
    [Abstract] [Full Text] [Related]

  • 13. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC, Duclos C, Nadeau S.
    Gait Posture; 2019 Feb 31; 68():483-487. PubMed ID: 30616177
    [Abstract] [Full Text] [Related]

  • 14. Combining muscle synergies and biomechanical analysis to assess gait in stroke patients.
    Barroso FO, Torricelli D, Molina-Rueda F, Alguacil-Diego IM, Cano-de-la-Cuerda R, Santos C, Moreno JC, Miangolarra-Page JC, Pons JL.
    J Biomech; 2017 Oct 03; 63():98-103. PubMed ID: 28882330
    [Abstract] [Full Text] [Related]

  • 15. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.
    Gomes AA, Ackermann M, Ferreira JP, Orselli MIV, Sacco ICN.
    J Neuroeng Rehabil; 2017 Nov 09; 14(1):111. PubMed ID: 29121964
    [Abstract] [Full Text] [Related]

  • 16. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H, Awad LN, Palmer JA, Higginson JS, Binder-Macleod SA.
    Neurorehabil Neural Repair; 2016 Sep 09; 30(8):743-52. PubMed ID: 26721869
    [Abstract] [Full Text] [Related]

  • 17. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
    Allen JL, Kautz SA, Neptune RR.
    Clin Biomech (Bristol); 2013 Jul 09; 28(6):697-704. PubMed ID: 23830138
    [Abstract] [Full Text] [Related]

  • 18. Muscle contributions to support during gait in an individual with post-stroke hemiparesis.
    Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL.
    J Biomech; 2006 Jul 09; 39(10):1769-77. PubMed ID: 16046223
    [Abstract] [Full Text] [Related]

  • 19. The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: an observational study.
    Dorsch S, Ada L, Canning CG, Al-Zharani M, Dean C.
    Arch Phys Med Rehabil; 2012 Jun 09; 93(6):1072-6. PubMed ID: 22464738
    [Abstract] [Full Text] [Related]

  • 20. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.
    Peterson CL, Hall AL, Kautz SA, Neptune RR.
    J Biomech; 2010 Aug 26; 43(12):2348-55. PubMed ID: 20466377
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.