These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 30359324
1. Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. Stem Cell Res Ther; 2018 Oct 25; 9(1):276. PubMed ID: 30359324 [Abstract] [Full Text] [Related]
2. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. Stavenschi E, Labour MN, Hoey DA. J Biomech; 2017 Apr 11; 55():99-106. PubMed ID: 28256244 [Abstract] [Full Text] [Related]
3. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration. Reinwald Y, El Haj AJ. J Biomed Mater Res A; 2018 Mar 11; 106(3):629-640. PubMed ID: 28984025 [Abstract] [Full Text] [Related]
4. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL. PLoS One; 2012 Mar 11; 7(9):e46689. PubMed ID: 23029565 [Abstract] [Full Text] [Related]
5. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. FASEB J; 2024 Sep 15; 38(17):e23892. PubMed ID: 39230563 [Abstract] [Full Text] [Related]
7. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells. Bergante S, Torretta E, Creo P, Sessarego N, Papini N, Piccoli M, Fania C, Cirillo F, Conforti E, Ghiroldi A, Tringali C, Venerando B, Ibatici A, Gelfi C, Tettamanti G, Anastasia L. J Lipid Res; 2014 Mar 15; 55(3):549-60. PubMed ID: 24449473 [Abstract] [Full Text] [Related]
8. Silencing of Long Non-Coding RNA NONHSAT009968 Ameliorates the Staphylococcal Protein A-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y. Cell Physiol Biochem; 2016 Mar 15; 39(4):1347-59. PubMed ID: 27607236 [Abstract] [Full Text] [Related]
9. Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2. Kang P, Wu Z, Huang Y, Luo Z, Huo S, Chen Q. PeerJ; 2022 Mar 15; 10():e13862. PubMed ID: 36217382 [Abstract] [Full Text] [Related]
10. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. Gao Y, Xiao F, Wang C, Wang C, Cui P, Zhang X, Chen X. J Cell Biochem; 2018 Aug 15; 119(8):6986-6996. PubMed ID: 29741283 [Abstract] [Full Text] [Related]
11. O-GlcNAc modification of the runt-related transcription factor 2 (Runx2) links osteogenesis and nutrient metabolism in bone marrow mesenchymal stem cells. Nagel AK, Ball LE. Mol Cell Proteomics; 2014 Dec 15; 13(12):3381-95. PubMed ID: 25187572 [Abstract] [Full Text] [Related]
12. Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X, Xia H, Li J, Yang X, Liu Q. Int J Mol Sci; 2019 Mar 26; 20(6):. PubMed ID: 30917596 [Abstract] [Full Text] [Related]
13. KR‑12‑a6 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via BMP/SMAD signaling. Fu L, Jin P, Hu Y, Lu H, Su L. Mol Med Rep; 2020 Jan 26; 21(1):61-68. PubMed ID: 31939626 [Abstract] [Full Text] [Related]
14. Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. Zhi L, Chen C, Pang X, Uludag H, Jiang H. Int Orthop; 2011 Dec 26; 35(12):1889-95. PubMed ID: 21487672 [Abstract] [Full Text] [Related]
15. Can Extracorporeal Shockwave Promote Osteogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells In Vitro? Colbath AC, Kisiday JD, Phillips JN, Goodrich LR. Stem Cells Dev; 2020 Jan 15; 29(2):110-118. PubMed ID: 31744386 [Abstract] [Full Text] [Related]
16. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Bilem I, Chevallier P, Plawinski L, Sone ED, Durrieu MC, Laroche G. Acta Biomater; 2016 May 15; 36():132-42. PubMed ID: 27000551 [Abstract] [Full Text] [Related]
17. Bone marrow mesenchymal stem cell-derived exosomal microRNA-382 promotes osteogenesis in osteoblast via regulation of SLIT2. Su H, Yang Y, Lv W, Li X, Zhao B. J Orthop Surg Res; 2023 Mar 10; 18(1):185. PubMed ID: 36894950 [Abstract] [Full Text] [Related]
18. Low-magnitude vibration induces osteogenic differentiation of bone marrow mesenchymal stem cells via miR-378a-3p/Grb2 pathway to promote bone formation in a rat model of age-related bone loss. Yu X, Zeng Y, Bao M, Wen J, Zhu G, Cao C, He X, Li L. FASEB J; 2020 Sep 10; 34(9):11754-11771. PubMed ID: 32652777 [Abstract] [Full Text] [Related]
19. CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues. Pontikoglou C, Langonné A, Ba MA, Varin A, Rosset P, Charbord P, Sensébé L, Deschaseaux F. J Cell Mol Med; 2016 Apr 10; 20(4):655-65. PubMed ID: 26773707 [Abstract] [Full Text] [Related]
20. Resveratrol benefits the lineage commitment of bone marrow mesenchymal stem cells into osteoblasts via miR-320c by targeting Runx2. Zou J, Du J, Tu H, Chen H, Cong K, Bi Z, Sun J. J Tissue Eng Regen Med; 2021 Apr 10; 15(4):347-360. PubMed ID: 33481337 [Abstract] [Full Text] [Related] Page: [Next] [New Search]