These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 30367507

  • 41. Bovine milk antibodies against cell surface protein antigen PAc-glucosyltransferase fusion protein suppress cell adhesion and alter glucan synthesis of Streptococcus mutans.
    Oho T, Shimazaki Y, Mitoma M, Yoshimura M, Yamashita Y, Okano K, Nakano Y, Kawagoe H, Fukuyama M, Fujihara N, Koga T.
    J Nutr; 1999 Oct; 129(10):1836-41. PubMed ID: 10498755
    [Abstract] [Full Text] [Related]

  • 42. Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt.
    Banas JA, Russell RR, Ferretti JJ.
    Infect Immun; 1990 Mar; 58(3):667-73. PubMed ID: 2307516
    [Abstract] [Full Text] [Related]

  • 43. Isolation of a glucan-binding domain of glucosyltransferase (1,6-alpha-glucan synthase) from Streptococcus sobrinus.
    Mooser G, Wong C.
    Infect Immun; 1988 Apr; 56(4):880-4. PubMed ID: 2964413
    [Abstract] [Full Text] [Related]

  • 44. Molecular and Functional Study of a Branching Sucrase-Like Glucansucrase Reveals an Evolutionary Intermediate between Two Subfamilies of the GH70 Enzymes.
    Yan M, Wang BH, Xu X, Chang P, Hang F, Wu Z, You C, Liu Z.
    Appl Environ Microbiol; 2018 May 01; 84(9):. PubMed ID: 29453261
    [Abstract] [Full Text] [Related]

  • 45. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159.
    Yu J, Yan F, Lu Q, Liu R.
    Food Res Int; 2018 Oct 01; 112():152-159. PubMed ID: 30131122
    [Abstract] [Full Text] [Related]

  • 46. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development.
    Koo H, Nino de Guzman P, Schobel BD, Vacca Smith AV, Bowen WH.
    Caries Res; 2006 Oct 01; 40(1):20-7. PubMed ID: 16352876
    [Abstract] [Full Text] [Related]

  • 47. Size and subdomain architecture of the glucan-binding domain of sucrose:3-alpha-D-glucosyltransferase from Streptococcus sobrinus.
    Wong C, Hefta SA, Paxton RJ, Shively JE, Mooser G.
    Infect Immun; 1990 Jul 01; 58(7):2165-70. PubMed ID: 2142138
    [Abstract] [Full Text] [Related]

  • 48. A QM/MM approach on the structural and stereoelectronic factors governing glycosylation by GTF-SI from Streptococcus mutans.
    Jaña GA, Mendoza F, Osorio MI, Alderete JB, Fernandes PA, Ramos MJ, Jiménez VA.
    Org Biomol Chem; 2018 Apr 04; 16(14):2438-2447. PubMed ID: 29557467
    [Abstract] [Full Text] [Related]

  • 49. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans.
    Hattori M, Kusumoto IT, Namba T, Ishigami T, Hara Y.
    Chem Pharm Bull (Tokyo); 1990 Mar 04; 38(3):717-20. PubMed ID: 2140716
    [Abstract] [Full Text] [Related]

  • 50. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria.
    van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG.
    Microbiol Mol Biol Rev; 2006 Mar 04; 70(1):157-76. PubMed ID: 16524921
    [Abstract] [Full Text] [Related]

  • 51. Action of agents on glucosyltransferases from Streptococcus mutans in solution and adsorbed to experimental pellicle.
    Wunder D, Bowen WH.
    Arch Oral Biol; 1999 Mar 04; 44(3):203-14. PubMed ID: 10217511
    [Abstract] [Full Text] [Related]

  • 52. Interaction of glucosyltransferase from Streptococcus mutans with various glucans.
    Hamada S, Torii M.
    J Gen Microbiol; 1980 Jan 04; 116(1):51-9. PubMed ID: 6154120
    [Abstract] [Full Text] [Related]

  • 53. Glucansucrases: mechanism of action and structure-function relationships.
    Monchois V, Willemot RM, Monsan P.
    FEMS Microbiol Rev; 1999 Apr 04; 23(2):131-51. PubMed ID: 10234842
    [Abstract] [Full Text] [Related]

  • 54. Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180.
    Meng X, Pijning T, Dobruchowska JM, Gerwig GJ, Dijkhuizen L.
    J Biol Chem; 2015 Dec 11; 290(50):30131-41. PubMed ID: 26507662
    [Abstract] [Full Text] [Related]

  • 55. Analysis of glucan synthesis by Streptococcus mutans.
    Kuramitsu HK, Smorawinska M, Nakano YJ, Shimamura A, Lis M.
    Dev Biol Stand; 1995 Dec 11; 85():303-7. PubMed ID: 8586194
    [Abstract] [Full Text] [Related]

  • 56. Activity of branched dextrans in the acceptor reaction of a glucosyltransferase (GTF-I) from Streptococcus mutans OMZ176.
    Walker GJ, Schuerch C.
    Carbohydr Res; 1986 Feb 01; 146(2):259-70. PubMed ID: 2420448
    [Abstract] [Full Text] [Related]

  • 57. Mechanism of synthesis of D-glucans by D-glucosyltransferases from Streptococcus mutans 6715.
    Robyt JF, Martin PJ.
    Carbohydr Res; 1983 Mar 01; 113(2):301-15. PubMed ID: 6220802
    [Abstract] [Full Text] [Related]

  • 58. Characterization of glucosyltransferaseB, GtfC, and GtfD in solution and on the surface of hydroxyapatite.
    Venkitaraman AR, Vacca-Smith AM, Kopec LK, Bowen WH.
    J Dent Res; 1995 Oct 01; 74(10):1695-701. PubMed ID: 7499593
    [Abstract] [Full Text] [Related]

  • 59. Glucosyltransferases of Streptococcus sobrinus C211 are both stimulated and inhibited by hydrogen peroxide.
    McAlister D, Nambiar S, Taylor KG, Doyle RJ.
    Oral Microbiol Immunol; 1989 Sep 01; 4(3):146-52. PubMed ID: 2534763
    [Abstract] [Full Text] [Related]

  • 60. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases.
    Mark P, Baumann MJ, Eklöf JM, Gullfot F, Michel G, Kallas AM, Teeri TT, Brumer H, Czjzek M.
    Proteins; 2009 Jun 01; 75(4):820-36. PubMed ID: 19004021
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.