These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


405 related items for PubMed ID: 30368637

  • 1. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM, Shedeed HA, Mabrouk MS, Tolba MF.
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [Abstract] [Full Text] [Related]

  • 2. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar SR.
    J Neuroeng Rehabil; 2014 Dec 16; 11():165. PubMed ID: 25510922
    [Abstract] [Full Text] [Related]

  • 3. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH, Williamson J, Won DO, Fazli S, Lee SW.
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul 16; 26(7):1443-1459. PubMed ID: 29985154
    [Abstract] [Full Text] [Related]

  • 4. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J, Zhou Z, Yin E, Yu Y, Hu D.
    Biomed Mater Eng; 2014 Jul 16; 24(6):2919-25. PubMed ID: 25226998
    [Abstract] [Full Text] [Related]

  • 5. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J, Yoon H, Park KS.
    Sensors (Basel); 2017 Jun 23; 17(7):. PubMed ID: 28644398
    [Abstract] [Full Text] [Related]

  • 6. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C, Boudir A, Hurter C, Peysakhovich V.
    Sensors (Basel); 2022 Jun 29; 22(13):. PubMed ID: 35808414
    [Abstract] [Full Text] [Related]

  • 7. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S, Zhou Y, Yu T, Zhang R, Huang Q, Chuai L, Mustafa MU, Gu Z, Yu ZL, Tan H, Li Y.
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb 29; 28(2):519-530. PubMed ID: 31870987
    [Abstract] [Full Text] [Related]

  • 8. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR, Witkowski M, Vitiello N, Birbaumer N.
    Biomed Tech (Berl); 2015 Jun 29; 60(3):199-205. PubMed ID: 25490027
    [Abstract] [Full Text] [Related]

  • 9. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y, Wongsawat Y, Parnichkun M.
    Annu Int Conf IEEE Eng Med Biol Soc; 2010 Jun 29; 2010():1360-3. PubMed ID: 21096331
    [Abstract] [Full Text] [Related]

  • 10. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J, Ardali MK, Jaramillo-Gonzalez A, Wu S, Tonin A, Birbaumer N, Chaudhary U.
    Sensors (Basel); 2020 Apr 25; 20(9):. PubMed ID: 32344820
    [Abstract] [Full Text] [Related]

  • 11. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X, Fatourechi M, Ward RK, Birch GE.
    J Neuroeng Rehabil; 2012 Jul 27; 9():50. PubMed ID: 22838499
    [Abstract] [Full Text] [Related]

  • 12. A hybrid BCI web browser based on EEG and EOG signals.
    Shenghong He, Tianyou Yu, Zhenghui Gu, Yuanqing Li.
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul 27; 2017():1006-1009. PubMed ID: 29060044
    [Abstract] [Full Text] [Related]

  • 13. The role of eye movement signals in non-invasive brain-computer interface typing system.
    Liu X, Hu B, Si Y, Wang Q.
    Med Biol Eng Comput; 2024 Jul 27; 62(7):1981-1990. PubMed ID: 38509350
    [Abstract] [Full Text] [Related]

  • 14. A hybrid platform based on EOG and EEG signals to restore communication for patients afflicted with progressive motor neuron diseases.
    Usakli AB, Gurkan S, Aloise F, Vecchiato G, Babiloni F.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jul 27; 2009():543-6. PubMed ID: 19964228
    [Abstract] [Full Text] [Related]

  • 15. Quantitative evaluation of ocular artifact removal methods based on real and estimated EOG signals.
    Noureddin B, Lawrence PD, Birch GE.
    Annu Int Conf IEEE Eng Med Biol Soc; 2008 Jul 27; 2008():5041-4. PubMed ID: 19163849
    [Abstract] [Full Text] [Related]

  • 16. Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals.
    Yedukondalu J, Sharma LD.
    Sensors (Basel); 2023 Jan 21; 23(3):. PubMed ID: 36772275
    [Abstract] [Full Text] [Related]

  • 17. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.
    Mannan MM, Kim S, Jeong MY, Kamran MA.
    Sensors (Basel); 2016 Feb 19; 16(2):241. PubMed ID: 26907276
    [Abstract] [Full Text] [Related]

  • 18. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J, Zhang Y, Cichocki A, Matsuno F.
    IEEE Trans Biomed Eng; 2015 Mar 19; 62(3):876-89. PubMed ID: 25398172
    [Abstract] [Full Text] [Related]

  • 19. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y, He S, Huang Q, Li Y.
    IEEE Trans Biomed Eng; 2020 Oct 19; 67(10):2881-2892. PubMed ID: 32070938
    [Abstract] [Full Text] [Related]

  • 20. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I, Kübler A, Halder S.
    J Neuroeng Rehabil; 2015 Sep 04; 12():76. PubMed ID: 26338101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.