These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 30375913
1. Divergent metabolic substrate utilization in brain during epileptogenesis precedes chronic hypometabolism. Bascuñana P, Brackhan M, Leiter I, Keller H, Jahreis I, Ross TL, Bengel FM, Bankstahl M, Bankstahl JP. J Cereb Blood Flow Metab; 2020 Jan; 40(1):204-213. PubMed ID: 30375913 [Abstract] [Full Text] [Related]
2. PET imaging identifies anti-inflammatory effects of fluoxetine and a correlation of glucose metabolism during epileptogenesis with chronic seizure frequency. Bankstahl M, Jahreis I, Wolf BJ, Ross TL, Bankstahl JP, Bascuñana P. Neuropharmacology; 2024 Dec 15; 261():110178. PubMed ID: 39369850 [Abstract] [Full Text] [Related]
3. Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Lee EM, Park GY, Im KC, Kim ST, Woo CW, Chung JH, Kim KS, Kim JS, Shon YM, Kim YI, Kang JK. Epilepsia; 2012 May 15; 53(5):860-9. PubMed ID: 22429025 [Abstract] [Full Text] [Related]
4. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Wang HE, Wu SY, Chang CW, Liu RS, Hwang LC, Lee TW, Chen JC, Hwang JJ. Nucl Med Biol; 2005 May 15; 32(4):367-75. PubMed ID: 15878506 [Abstract] [Full Text] [Related]
5. PET Neuroimaging Reveals Serotonergic and Metabolic Dysfunctions in the Hippocampal Electrical Kindling Model of Epileptogenesis. Bascuñana P, García-García L, Javela J, Fernández de la Rosa R, Shiha AA, Kelly J, Delgado M, Pozo MÁ. Neuroscience; 2019 Jun 15; 409():101-110. PubMed ID: 31034972 [Abstract] [Full Text] [Related]
6. Investigation of Cerebral O-(2-[18F]Fluoroethyl)-L-Tyrosine Uptake in Rat Epilepsy Models. Stegmayr C, Surges R, Choi CH, Burda N, Stoffels G, Filß C, Willuweit A, Neumaier B, Heinzel A, Shah NJ, Mottaghy FM, Langen KJ. Mol Imaging Biol; 2020 Oct 15; 22(5):1255-1265. PubMed ID: 32409931 [Abstract] [Full Text] [Related]
7. [18 F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Brackhan M, Bascuñana P, Ross TL, Bengel FM, Bankstahl JP, Bankstahl M. Epilepsia; 2018 Mar 15; 59(3):617-626. PubMed ID: 29364511 [Abstract] [Full Text] [Related]
8. A Single High Dose of Flufenamic Acid in Rats does not Reduce the Damage Associated with the Rat Lithium-Pilocarpine Model of Status Epilepticus but Leads to Deleterious Outcomes. Hernández-Martín N, Gomez F, Silván Á, Rosa RF, Delgado M, Bascuñana P, Pozo MÁ, García-García L. J Integr Neurosci; 2023 May 16; 22(3):75. PubMed ID: 37258443 [Abstract] [Full Text] [Related]
9. Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by 18F-Fluoroethyl-l-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic. Hutterer M, Ebner Y, Riemenschneider MJ, Willuweit A, McCoy M, Egger B, Schröder M, Wendl C, Hellwig D, Grosse J, Menhart K, Proescholdt M, Fritsch B, Urbach H, Stockhammer G, Roelcke U, Galldiks N, Meyer PT, Langen KJ, Hau P, Trinka E. J Nucl Med; 2017 Jan 16; 58(1):129-137. PubMed ID: 27469356 [Abstract] [Full Text] [Related]
10. The vasodilator naftidrofuryl attenuates short-term brain glucose hypometabolism in the lithium-pilocarpine rat model of status epilepticus without providing neuroprotection. García-García L, Gomez F, Delgado M, Fernández de la Rosa R, Pozo MÁ. Eur J Pharmacol; 2023 Jan 15; 939():175453. PubMed ID: 36516936 [Abstract] [Full Text] [Related]
11. Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Goffin K, Van Paesschen W, Dupont P, Van Laere K. Exp Neurol; 2009 May 15; 217(1):205-9. PubMed ID: 19236862 [Abstract] [Full Text] [Related]
12. Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats. Shiha AA, de Cristóbal J, Delgado M, Fernández de la Rosa R, Bascuñana P, Pozo MA, García-García L. Brain Res Bull; 2015 Feb 15; 111():36-47. PubMed ID: 25541342 [Abstract] [Full Text] [Related]
13. Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers. Bascuñana P, Gendron T, Sander K, Jahreis I, Polyak A, Ross TL, Bankstahl M, Arstad E, Bankstahl JP. Epilepsia; 2019 Nov 15; 60(11):2325-2333. PubMed ID: 31571210 [Abstract] [Full Text] [Related]
14. Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. Russmann V, Brendel M, Mille E, Helm-Vicidomini A, Beck R, Günther L, Lindner S, Rominger A, Keck M, Salvamoser JD, Albert NL, Bartenstein P, Potschka H. Neuroimage Clin; 2017 Nov 15; 15():35-44. PubMed ID: 28462087 [Abstract] [Full Text] [Related]
15. Serial Quantitative TSPO-Targeted PET Reveals Peak Microglial Activation up to 2 Weeks After an Epileptogenic Brain Insult. Brackhan M, Bascuñana P, Postema JM, Ross TL, Bengel FM, Bankstahl M, Bankstahl JP. J Nucl Med; 2016 Aug 15; 57(8):1302-8. PubMed ID: 27056616 [Abstract] [Full Text] [Related]
16. Attenuation of epileptogenesis by 2-deoxy-d-glucose is accompanied by increased cerebral glucose supply, microglial activation and reduced astrocytosis. Leiter I, Bascuñana P, Bengel FM, Bankstahl JP, Bankstahl M. Neurobiol Dis; 2019 Oct 15; 130():104510. PubMed ID: 31212069 [Abstract] [Full Text] [Related]
17. [18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Kaneko KI, Irie S, Mawatari A, Igesaka A, Hu D, Nakaoka T, Hayashinaka E, Wada Y, Doi H, Watanabe Y, Cui Y. Eur J Nucl Med Mol Imaging; 2022 Jun 15; 49(7):2265-2275. PubMed ID: 35157105 [Abstract] [Full Text] [Related]
18. [18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats. Brabazon F, Wilson CM, Shukla DK, Mathur S, Jaiswal S, Bermudez S, Byrnes KR, Selwyn R. J Neurotrauma; 2017 Mar 01; 34(5):1074-1085. PubMed ID: 27554593 [Abstract] [Full Text] [Related]
19. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ. Nucl Med Biol; 2009 Oct 01; 36(7):779-87. PubMed ID: 19720290 [Abstract] [Full Text] [Related]
20. Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis. Jahreis I, Bascuñana P, Ross TL, Bankstahl JP, Bankstahl M. PLoS One; 2021 Oct 01; 16(11):e0260482. PubMed ID: 34818362 [Abstract] [Full Text] [Related] Page: [Next] [New Search]