These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 30378775

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds.
    Abarzúa-Illanes PN, Padilla C, Ramos A, Isaacs M, Ramos-Grez J, Olguín HC, Valenzuela LM.
    J Biomed Mater Res A; 2017 Aug; 105(8):2241-2251. PubMed ID: 28426898
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells.
    Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, Zhang X, Schmidt CE, Hamilton MC, Lipke EA.
    Acta Biomater; 2015 Dec; 28():109-120. PubMed ID: 26407651
    [Abstract] [Full Text] [Related]

  • 8. Fabrication of Chitosan/Polypyrrole-coated poly(L-lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth.
    Xu Y, Huang Z, Pu X, Yin G, Zhang J.
    Cell Prolif; 2019 May; 52(3):e12588. PubMed ID: 30972893
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth.
    Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M.
    J Biomed Mater Res A; 2022 May; 110(5):1134-1146. PubMed ID: 35075781
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering.
    Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR.
    Biomater Sci; 2021 Jun 04; 9(11):4040-4053. PubMed ID: 33899845
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering.
    Broda CR, Lee JY, Sirivisoot S, Schmidt CE, Harrison BS.
    J Biomed Mater Res A; 2011 Sep 15; 98(4):509-16. PubMed ID: 21681943
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Polymeric Nanocomposite Structures Based on Functionalized Graphene with Tunable Properties for Nervous Tissue Replacement.
    Talebi A, Labbaf S, Atari M, Parhizkar M.
    ACS Biomater Sci Eng; 2021 Sep 13; 7(9):4591-4601. PubMed ID: 34461017
    [Abstract] [Full Text] [Related]

  • 19. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.
    McClure MJ, Clark NM, Hyzy SL, Chalfant CE, Olivares-Navarrete R, Boyan BD, Schwartz Z.
    Acta Biomater; 2016 Jul 15; 39():44-54. PubMed ID: 27142254
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.