These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 30382768
1. Epithelial SERPINB10, a novel marker of airway eosinophilia in asthma, contributes to allergic airway inflammation. Mo Y, Zhang K, Feng Y, Yi L, Liang Y, Wu W, Zhao J, Zhang Z, Xu Y, Hu Q, He J, Zhen G. Am J Physiol Lung Cell Mol Physiol; 2019 Jan 01; 316(1):L245-L254. PubMed ID: 30382768 [Abstract] [Full Text] [Related]
2. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Zhang K, Liang Y, Feng Y, Wu W, Zhang H, He J, Hu Q, Zhao J, Xu Y, Liu Z, Zhen G. Am J Physiol Lung Cell Mol Physiol; 2018 Aug 01; 315(2):L253-L264. PubMed ID: 29644894 [Abstract] [Full Text] [Related]
3. microRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting δ-catenin, a novel catenin in asthma. Liang Y, Feng Y, Wu W, Chang C, Chen D, Chen S, Zhen G. Clin Exp Allergy; 2020 Jan 01; 50(1):29-40. PubMed ID: 31520422 [Abstract] [Full Text] [Related]
4. Correlation between CCL26 production by human bronchial epithelial cells and airway eosinophils: Involvement in patients with severe eosinophilic asthma. Larose MC, Chakir J, Archambault AS, Joubert P, Provost V, Laviolette M, Flamand N. J Allergy Clin Immunol; 2015 Oct 01; 136(4):904-13. PubMed ID: 25936567 [Abstract] [Full Text] [Related]
5. Increased epithelial galectin-13 expression associates with eosinophilic airway inflammation in asthma. Yi L, Zhang S, Feng Y, Wu W, Chang C, Chen D, Chen S, Zhao J, Zhen G. Clin Exp Allergy; 2021 Dec 01; 51(12):1566-1576. PubMed ID: 34075657 [Abstract] [Full Text] [Related]
6. Increased SERPINB10 Expression in Induced Sputum Was Associated with Airway Type 2 Inflammation in Asthma. Zong W, Liang Y, Mo Y. Int Arch Allergy Immunol; 2022 Dec 01; 183(9):946-952. PubMed ID: 35526531 [Abstract] [Full Text] [Related]
7. Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma. Doran E, Choy DF, Shikotra A, Butler CA, O'Rourke DM, Johnston JA, Kissenpfennig A, Bradding P, Arron JR, Heaney LG. Eur Respir J; 2016 Sep 01; 48(3):715-25. PubMed ID: 27338192 [Abstract] [Full Text] [Related]
8. Epithelial microRNA-30a-3p targets RUNX2/HMGB1 axis to suppress airway eosinophilic inflammation in asthma. Wu W, Gao J, Chen D, Chen G, Feng Y, Chang C, Chen S, Yi L, Zhen G. Respir Res; 2022 Jan 29; 23(1):17. PubMed ID: 35093061 [Abstract] [Full Text] [Related]
10. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. Proc Natl Acad Sci U S A; 2007 Oct 02; 104(40):15858-63. PubMed ID: 17898169 [Abstract] [Full Text] [Related]
11. Identification of airway mucosal type 2 inflammation by using clinical biomarkers in asthmatic patients. Silkoff PE, Laviolette M, Singh D, FitzGerald JM, Kelsen S, Backer V, Porsbjerg CM, Girodet PO, Berger P, Kline JN, Chupp G, Susulic VS, Barnathan ES, Baribaud F, Loza MJ, Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study investigators. J Allergy Clin Immunol; 2017 Sep 02; 140(3):710-719. PubMed ID: 28089872 [Abstract] [Full Text] [Related]
12. SERPINB10 contributes to asthma by inhibiting the apoptosis of allergenic Th2 cells. Mo Y, Ye L, Cai H, Zhu G, Wang J, Zhu M, Song X, Yang C, Jin M. Respir Res; 2021 Jun 14; 22(1):178. PubMed ID: 34126986 [Abstract] [Full Text] [Related]
13. IL-12-dependent vascular cell adhesion molecule-1 expression contributes to airway eosinophilic inflammation in a mouse model of asthma-like reaction. Wang S, Fan Y, Han X, Yang J, Bilenki L, Yang X. J Immunol; 2001 Feb 15; 166(4):2741-9. PubMed ID: 11160340 [Abstract] [Full Text] [Related]
14. Airway wall expression of OX40/OX40L and interleukin-4 in asthma. Siddiqui S, Mistry V, Doe C, Stinson S, Foster M, Brightling C. Chest; 2010 Apr 15; 137(4):797-804. PubMed ID: 20139223 [Abstract] [Full Text] [Related]
15. Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset. Coleman JM, Naik C, Holguin F, Ray A, Ray P, Trudeau JB, Wenzel SE. Thorax; 2012 Dec 15; 67(12):1061-6. PubMed ID: 23015684 [Abstract] [Full Text] [Related]
17. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. Peters MC, Mekonnen ZK, Yuan S, Bhakta NR, Woodruff PG, Fahy JV. J Allergy Clin Immunol; 2014 Feb 15; 133(2):388-94. PubMed ID: 24075231 [Abstract] [Full Text] [Related]
18. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma. Lee H, Han AR, Kim Y, Choi SH, Ko E, Lee NY, Jeong JH, Kim SH, Bae H. Int J Immunopathol Pharmacol; 2009 Feb 15; 22(3):591-603. PubMed ID: 19822076 [Abstract] [Full Text] [Related]
19. Type-2 airway inflammation in mild asthma patients with high blood eosinophils and high fractional exhaled nitric oxide. Southworth T, Van Geest M, Singh D. Clin Transl Sci; 2021 Jul 15; 14(4):1259-1264. PubMed ID: 34106513 [Abstract] [Full Text] [Related]
20. Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Komiya A, Nagase H, Yamada H, Sekiya T, Yamaguchi M, Sano Y, Hanai N, Furuya A, Ohta K, Matsushima K, Yoshie O, Yamamoto K, Hirai K. Cell Immunol; 2003 Oct 15; 225(2):91-100. PubMed ID: 14698143 [Abstract] [Full Text] [Related] Page: [Next] [New Search]