These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 30384298

  • 1. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles.
    Fernando I, Zhou Y.
    Chemosphere; 2019 Feb; 216():297-305. PubMed ID: 30384298
    [Abstract] [Full Text] [Related]

  • 2. Effects of pH, Electrolyte, Humic Acid, and Light Exposure on the Long-Term Fate of Silver Nanoparticles.
    Zhou W, Liu YL, Stallworth AM, Ye C, Lenhart JJ.
    Environ Sci Technol; 2016 Nov 15; 50(22):12214-12224. PubMed ID: 27741391
    [Abstract] [Full Text] [Related]

  • 3. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.
    Tai JT, Lai CS, Ho HC, Yeh YS, Wang HF, Ho RM, Tsai DH.
    Langmuir; 2014 Nov 04; 30(43):12755-64. PubMed ID: 25294101
    [Abstract] [Full Text] [Related]

  • 4. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X, Li P, Lou J, Fu X, Zhang H.
    Environ Pollut; 2017 Nov 04; 230():674-682. PubMed ID: 28715772
    [Abstract] [Full Text] [Related]

  • 5. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS, Zhang Q, Colvin VL.
    Environ Sci Technol; 2014 Oct 21; 48(20):11954-61. PubMed ID: 25265014
    [Abstract] [Full Text] [Related]

  • 6. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM.
    Environ Sci Technol; 2010 Feb 15; 44(4):1260-6. PubMed ID: 20099802
    [Abstract] [Full Text] [Related]

  • 7. Long term impact of surfactants & polymers on the colloidal stability, aggregation and dissolution of silver nanoparticles.
    Fernando I, Qian T, Zhou Y.
    Environ Res; 2019 Dec 15; 179(Pt A):108781. PubMed ID: 31586861
    [Abstract] [Full Text] [Related]

  • 8. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ, Yin YG, Chao JB, Shen MH, Liu JF.
    Environ Sci Technol; 2014 Dec 15; 48(1):403-11. PubMed ID: 24328224
    [Abstract] [Full Text] [Related]

  • 9. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM, Yau SK, Lok CN, So MH, Che CM.
    Chem Asian J; 2010 Feb 01; 5(2):285-93. PubMed ID: 20063340
    [Abstract] [Full Text] [Related]

  • 10. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P, Achterberg EP, Pampín J, Affatati A, El-Shahawi MS.
    Sci Total Environ; 2016 Jan 01; 539():7-16. PubMed ID: 26363390
    [Abstract] [Full Text] [Related]

  • 11. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.
    Kent RD, Vikesland PJ.
    Environ Sci Technol; 2012 Jul 03; 46(13):6977-84. PubMed ID: 22191460
    [Abstract] [Full Text] [Related]

  • 12. Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles.
    Oćwieja M, Barbasz A, Walas S, Roman M, Paluszkiewicz C.
    Colloids Surf B Biointerfaces; 2017 Dec 01; 160():429-437. PubMed ID: 28987952
    [Abstract] [Full Text] [Related]

  • 13. The stability of silver nanoparticles in a model of pulmonary surfactant.
    Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J, Chung KF, Tetley TD, Porter AE, Ryan MP.
    Environ Sci Technol; 2013 Oct 01; 47(19):11232-40. PubMed ID: 23988335
    [Abstract] [Full Text] [Related]

  • 14. H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species.
    He D, Garg S, Waite TD.
    Langmuir; 2012 Jul 10; 28(27):10266-75. PubMed ID: 22616806
    [Abstract] [Full Text] [Related]

  • 15. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.
    Kim ST, Lee YJ, Hwang YS, Lee S.
    Talanta; 2015 Jan 10; 132():939-44. PubMed ID: 25476400
    [Abstract] [Full Text] [Related]

  • 16. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.
    Zhang W, Yao Y, Li K, Huang Y, Chen Y.
    Environ Pollut; 2011 Dec 10; 159(12):3757-62. PubMed ID: 21835520
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation.
    Li Y, Niu J, Shang E, Crittenden J.
    Environ Sci Technol; 2014 May 06; 48(9):4946-53. PubMed ID: 24673243
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study.
    Ho CM, Wong CK, Yau SK, Lok CN, Che CM.
    Chem Asian J; 2011 Sep 05; 6(9):2506-11. PubMed ID: 21608134
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.