These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 30390162

  • 1. A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning.
    Tong C, Liang B, Li J, Zheng Z.
    J Med Syst; 2018 Nov 03; 42(12):249. PubMed ID: 30390162
    [Abstract] [Full Text] [Related]

  • 2. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R.
    J Digit Imaging; 2018 Aug 03; 31(4):513-519. PubMed ID: 29404850
    [Abstract] [Full Text] [Related]

  • 3. Skeletal bone age assessments for young children based on regression convolutional neural networks.
    Hao PY, Chokuwa S, Xie XH, Wu FL, Wu J, Bai C.
    Math Biosci Eng; 2019 Jul 12; 16(6):6454-6466. PubMed ID: 31698572
    [Abstract] [Full Text] [Related]

  • 4. Deep learning for automated skeletal bone age assessment in X-ray images.
    Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R.
    Med Image Anal; 2017 Feb 12; 36():41-51. PubMed ID: 27816861
    [Abstract] [Full Text] [Related]

  • 5. Incorporated region detection and classification using deep convolutional networks for bone age assessment.
    Bui TD, Lee JJ, Shin J.
    Artif Intell Med; 2019 Jun 12; 97():1-8. PubMed ID: 31202395
    [Abstract] [Full Text] [Related]

  • 6. Skeletal bone age prediction based on a deep residual network with spatial transformer.
    Han Y, Wang G.
    Comput Methods Programs Biomed; 2020 Dec 12; 197():105754. PubMed ID: 32957059
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression.
    Somkantha K, Theera-Umpon N, Auephanwiriyakul S.
    J Digit Imaging; 2011 Dec 12; 24(6):1044-58. PubMed ID: 21347746
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Forensic bone age assessment of hand and wrist joint MRI images in Chinese han male adolescents based on deep convolutional neural networks.
    Zhou HM, Zhou ZL, He YH, Liu TA, Wan L, Wang YH.
    Int J Legal Med; 2024 Nov 12; 138(6):2427-2440. PubMed ID: 39060444
    [Abstract] [Full Text] [Related]

  • 11. Support vector machine classification based on correlation prototypes applied to bone age assessment.
    Harmsen M, Fischer B, Schramm H, Seidl T, Deserno TM.
    IEEE J Biomed Health Inform; 2013 Jan 12; 17(1):190-7. PubMed ID: 23192601
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.
    Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP.
    Radiology; 2018 Apr 12; 287(1):313-322. PubMed ID: 29095675
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regression Convolutional Neural Network for Automated Pediatric Bone Age Assessment From Hand Radiograph.
    Ren X, Li T, Yang X, Wang S, Ahmad S, Xiang L, Stone SR, Li L, Zhan Y, Shen D, Wang Q.
    IEEE J Biomed Health Inform; 2019 Sep 12; 23(5):2030-2038. PubMed ID: 30346295
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.