These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 30390452
21. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC. J Hazard Mater; 2010 Sep 15; 181(1-3):315-23. PubMed ID: 20605683 [Abstract] [Full Text] [Related]
22. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Yoshida N, Yoshida Y, Handa Y, Kim HK, Ichihara S, Katayama A. Sci Total Environ; 2007 Aug 01; 381(1-3):233-42. PubMed ID: 17477955 [Abstract] [Full Text] [Related]
23. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Tong H, Liu C, Li F, Luo C, Chen M, Hu M. J Hazard Mater; 2015 Nov 15; 298():252-60. PubMed ID: 26073380 [Abstract] [Full Text] [Related]
24. Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Yang S, Shibata A, Yoshida N, Katayama A. Biotechnol Bioeng; 2009 Jan 01; 102(1):81-90. PubMed ID: 18683261 [Abstract] [Full Text] [Related]
25. Effects of compost-derived humic acid on the bio-dechlorination of pentachlorophenol in high iron content paddy soil. Xiao Y, Lu H, Tan W, Tang J, Wang Y, Shi J, Yu T, Yuan Y. Ecotoxicol Environ Saf; 2021 Dec 20; 227():112900. PubMed ID: 34673405 [Abstract] [Full Text] [Related]
26. Microbial community response to the toxic effect of pentachlorophenol in paddy soil amended with an electron donor and shuttle. Chen M, Tong H, Qiao J, Lv Y, Jiang Q, Gao Y, Liu C. Ecotoxicol Environ Saf; 2020 Dec 01; 205():111328. PubMed ID: 32950805 [Abstract] [Full Text] [Related]
27. Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol. Yuan Y, Xi B, He XS, Tan W, Zhang H, Li D, Yang C, Zhao X. J Agric Food Chem; 2019 May 01; 67(17):4726-4733. PubMed ID: 30964976 [Abstract] [Full Text] [Related]
28. Bacterial networks mediate pentachlorophenol dechlorination across land-use types with citrate addition. Li H, Jiang Y, Wang S, Chen L, Wen X, Huang M, Cheng X, Cheng Z, Tao L. J Hazard Mater; 2020 Feb 15; 384():121295. PubMed ID: 31577970 [Abstract] [Full Text] [Related]
29. Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Kennes C, Wu WM, Bhatnagar L, Zeikus JG. Appl Microbiol Biotechnol; 1996 Feb 15; 44(6):801-6. PubMed ID: 8867638 [Abstract] [Full Text] [Related]
30. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ. J Appl Microbiol; 2002 Feb 15; 92(1):127-33. PubMed ID: 11849336 [Abstract] [Full Text] [Related]
31. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement. Wang Y, Liu X, Huang J, Xiao W, Zhang J, Yin C. Environ Sci Pollut Res Int; 2017 Oct 15; 24(29):22852-22860. PubMed ID: 28444568 [Abstract] [Full Text] [Related]
32. Spatial and temporal variations in pentachlorophenol dissipation at the aerobic--anaerobic interfaces of flooded paddy soils. Lin J, Xu Y, Brookes PC, He Y, Xu J. Environ Pollut; 2013 Jul 15; 178():433-40. PubMed ID: 23628887 [Abstract] [Full Text] [Related]
36. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q, Wang Z, Ma S, Chen Y. Sci Total Environ; 2006 Sep 15; 368(2-3):814-22. PubMed ID: 16643990 [Abstract] [Full Text] [Related]
38. Dynamic processes in conjunction with microbial response to disclose the biochar effect on pentachlorophenol degradation under both aerobic and anaerobic conditions. Xu Y, Liu J, Cai W, Feng J, Lu Z, Wang H, Franks AE, Tang C, He Y, Xu J. J Hazard Mater; 2020 Feb 15; 384():121503. PubMed ID: 31708286 [Abstract] [Full Text] [Related]
39. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X, Wang P, Zhang J, Chen C, Wang Z, Kopittke PM, Kretzschmar R, Zhao FJ. Environ Pollut; 2019 Aug 15; 251():952-960. PubMed ID: 31234262 [Abstract] [Full Text] [Related]
40. Phytoremediation efficiency of a pcp-contaminated soil using four plant species as mono- and mixed cultures. Hechmi N, Aissa NB, Abdenaceur H, Jedidi N. Int J Phytoremediation; 2014 Aug 15; 16(7-12):1241-56. PubMed ID: 24933915 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]