These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 30391862
1. 2-Phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal. Xu ZB, Wang WL, Huang N, Wu QY, Lee MY, Hu HY. Water Res; 2019 Jan 01; 148():334-343. PubMed ID: 30391862 [Abstract] [Full Text] [Related]
2. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal. Huang N, Xu ZB, Wang WL, Wang Q, Wu QY, Hu HY. Chemosphere; 2022 Mar 01; 291(Pt 3):133027. PubMed ID: 34822865 [Abstract] [Full Text] [Related]
4. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity. Hamdi El Najjar N, Touffet A, Deborde M, Journel R, Leitner NK. Chemosphere; 2013 Oct 01; 93(4):604-11. PubMed ID: 23850240 [Abstract] [Full Text] [Related]
5. Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3-one: Kinetics, degradation pathway, and toxicity. Ye B, Lee MY, Wang WL, Li A, Liu ZY, Wu QY, Hu HY. J Hazard Mater; 2020 Jul 15; 394():122563. PubMed ID: 32248031 [Abstract] [Full Text] [Related]
6. Oxidation of the N-containing phosphonate antiscalants NTMP and DTPMP in reverse osmosis concentrates: Reaction kinetics and degradation rate. Mutke XAM, Drees F, Lutze HV, Schmidt TC. Chemosphere; 2023 Nov 15; 341():139999. PubMed ID: 37643647 [Abstract] [Full Text] [Related]
7. Study on the kinetics and transformation products of salicylic acid in water via ozonation. Hu R, Zhang L, Hu J. Chemosphere; 2016 Jun 15; 153():394-404. PubMed ID: 27031802 [Abstract] [Full Text] [Related]
8. Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters. King JF, Szczuka A, Zhang Z, Mitch WA. Water Res; 2020 Jun 01; 176():115744. PubMed ID: 32251944 [Abstract] [Full Text] [Related]
9. Investigation of ozonation kinetics and transformation products of sucralose. Hu R, Zhang L, Hu J. Sci Total Environ; 2017 Dec 15; 603-604():8-17. PubMed ID: 28614740 [Abstract] [Full Text] [Related]
10. Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Benner J, Salhi E, Ternes T, von Gunten U. Water Res; 2008 Jun 15; 42(12):3003-12. PubMed ID: 18472125 [Abstract] [Full Text] [Related]
11. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Bourgin M, Borowska E, Helbing J, Hollender J, Kaiser HP, Kienle C, McArdell CS, Simon E, von Gunten U. Water Res; 2017 Oct 01; 122():234-245. PubMed ID: 28601791 [Abstract] [Full Text] [Related]
12. Effect of pre-ozonation on optimized coagulation of a typical North-China source water. Yan M, Wang D, Shi B, Wang M, Yan Y. Chemosphere; 2007 Nov 01; 69(11):1695-702. PubMed ID: 17644153 [Abstract] [Full Text] [Related]
13. Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment. Wang Z, Chen G, Patton S, Ren C, Liu J, Liu H. Water Res; 2019 Aug 01; 159():30-37. PubMed ID: 31078749 [Abstract] [Full Text] [Related]
14. Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. Cao Y, Zhang S, Wang G, Li T, Xu X, Deng O, Zhang Y, Pu Y. J Hazard Mater; 2017 Oct 05; 339():33-42. PubMed ID: 28609727 [Abstract] [Full Text] [Related]
15. Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process. Chen W, Gu Z, Wen P, Li Q. Chemosphere; 2019 Feb 05; 217():411-422. PubMed ID: 30423520 [Abstract] [Full Text] [Related]
16. Understanding the ozonated degradation of sulfadimethoxine, exploration of reaction site, and classification of degradation products. Shad A, Li C, Zuo J, Liu J, Dar AA, Wang Z. Chemosphere; 2018 Dec 05; 212():228-236. PubMed ID: 30145414 [Abstract] [Full Text] [Related]
17. Combined and individual applications of ozonation and microwave treatment for waste activated sludge solubilization and nutrient release. Cosgun S, Semerci N. J Environ Manage; 2019 Jul 01; 241():76-83. PubMed ID: 30986664 [Abstract] [Full Text] [Related]
18. [Characteristics and Mechanism of Hybrid Ozonation-Coagulation Process in Wastewater Reclamation]. Hou R, Jin X, Jin PK, Wang XC. Huan Jing Ke Xue; 2017 Feb 08; 38(2):640-646. PubMed ID: 29964521 [Abstract] [Full Text] [Related]
19. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. Rodríguez EM, Márquez G, León EA, Álvarez PM, Amat AM, Beltrán FJ. J Environ Manage; 2013 Sep 30; 127():114-24. PubMed ID: 23685272 [Abstract] [Full Text] [Related]
20. Effective degradation of methylisothiazolone biocide using ozone: Kinetics, mechanisms, and decreases in toxicity. Li A, Wu QY, Tian GP, Hu HY. J Environ Manage; 2016 Dec 01; 183(Pt 3):1064-1071. PubMed ID: 27692888 [Abstract] [Full Text] [Related] Page: [Next] [New Search]