These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


746 related items for PubMed ID: 30396365

  • 21. A dual-targeting approach with anti-IL10R CAR-T cells engineered to release anti-CD33 bispecific antibody in enhancing killing effect on acute myeloid leukemia cells.
    Yan Z, Gu R, Ma H, Chen N, Zhang T, Xu Y, Qiu S, Xing H, Tang K, Tian Z, Rao Q, Wang M, Wang J.
    Cell Oncol (Dordr); 2024 Oct; 47(5):1879-1895. PubMed ID: 39008193
    [Abstract] [Full Text] [Related]

  • 22. TGF-β Enhances the Anti-inflammatory Effect of Tumor- Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494.
    Moaaz M, Lotfy H, Elsherbini B, Motawea MA, Fadali G.
    Asian Pac J Cancer Prev; 2020 Nov 01; 21(11):3393-3403. PubMed ID: 33247701
    [Abstract] [Full Text] [Related]

  • 23. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia.
    Herrmann M, Krupka C, Deiser K, Brauchle B, Marcinek A, Ogrinc Wagner A, Rataj F, Mocikat R, Metzeler KH, Spiekermann K, Kobold S, Fenn NC, Hopfner KP, Subklewe M.
    Blood; 2018 Dec 06; 132(23):2484-2494. PubMed ID: 30275109
    [Abstract] [Full Text] [Related]

  • 24. Tumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancer.
    Li F, Zhao Y, Wei L, Li S, Liu J.
    Cancer Biol Ther; 2018 Aug 03; 19(8):695-705. PubMed ID: 29621426
    [Abstract] [Full Text] [Related]

  • 25. IFN-γ decreased the suppressive function of CD33+HLA-DRlow myeloid cells through down-regulation of PD-1/PD-L2 signaling pathway.
    Zhan X, Hu S, Wu Y, Li M, Liu T, Ming S, Wu M, Liu M, Huang X.
    Mol Immunol; 2018 Feb 03; 94():107-120. PubMed ID: 29291452
    [Abstract] [Full Text] [Related]

  • 26. IL-17/IL-10 double-producing T cells: new link between infections, immunosuppression and acute myeloid leukemia.
    Musuraca G, De Matteis S, Napolitano R, Papayannidis C, Guadagnuolo V, Fabbri F, Cangini D, Ceccolini M, Giannini MB, Lucchesi A, Ronconi S, Mariotti P, Savini P, Tani M, Fattori PP, Guidoboni M, Martinelli G, Zoli W, Amadori D, Carloni S.
    J Transl Med; 2015 Jul 15; 13():229. PubMed ID: 26174551
    [Abstract] [Full Text] [Related]

  • 27. CD33 BiTE® molecule-mediated immune synapse formation and subsequent T-cell activation is determined by the expression profile of activating and inhibitory checkpoint molecules on AML cells.
    Marcinek A, Brauchle B, Rohrbacher L, Hänel G, Philipp N, Märkl F, Strzalkowski T, Lacher SM, Udiljak D, Spiekermann K, Theurich S, Kobold S, Kischel R, James JR, Bücklein VL, Subklewe M.
    Cancer Immunol Immunother; 2023 Jul 15; 72(7):2499-2512. PubMed ID: 37041225
    [Abstract] [Full Text] [Related]

  • 28. The Frequency and Effect of Granulocytic Myeloid-Derived Suppressor Cells on Mycobacterial Survival in Patients With Tuberculosis: A Preliminary Report.
    Davids M, Pooran A, Smith L, Tomasicchio M, Dheda K.
    Front Immunol; 2021 Jul 15; 12():676679. PubMed ID: 34149712
    [Abstract] [Full Text] [Related]

  • 29. IFN-α-based treatment of patients with chronic HCV show increased levels of cells with myeloid-derived suppressor cell phenotype and of IDO and NOS.
    Salem ML, Zidan AA, Attia M, El-Naggar RE, Nassef M, Abou El-Azm AR, El-Bate H, Yussif M, Galal S, Abo Senna M, El Demellawy M.
    Immunopharmacol Immunotoxicol; 2017 Aug 15; 39(4):188-198. PubMed ID: 28472907
    [Abstract] [Full Text] [Related]

  • 30. CD16xCD33 Bispecific Killer Cell Engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL.
    Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, Miller JS, Uhrberg M, Babor F.
    Cancer Immunol Immunother; 2021 Dec 15; 70(12):3701-3708. PubMed ID: 34398302
    [Abstract] [Full Text] [Related]

  • 31. The role of CD33 as therapeutic target in acute myeloid leukemia.
    Walter RB.
    Expert Opin Ther Targets; 2014 Jul 15; 18(7):715-8. PubMed ID: 24750020
    [Abstract] [Full Text] [Related]

  • 32. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.
    Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, Lamb LS, Bhatia R, Mineishi S, Di Stasi A.
    PLoS One; 2016 Jul 15; 11(12):e0166891. PubMed ID: 27907031
    [Abstract] [Full Text] [Related]

  • 33. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients.
    Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD.
    Cancer Immunol Immunother; 2017 Apr 15; 66(4):503-513. PubMed ID: 28108766
    [Abstract] [Full Text] [Related]

  • 34. Clinical overview of anti-CD19 BiTE(®) and ex vivo data from anti-CD33 BiTE(®) as examples for retargeting T cells in hematologic malignancies.
    Zugmaier G, Klinger M, Schmidt M, Subklewe M.
    Mol Immunol; 2015 Oct 15; 67(2 Pt A):58-66. PubMed ID: 25883042
    [Abstract] [Full Text] [Related]

  • 35. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia.
    Pyzer AR, Stroopinsky D, Rajabi H, Washington A, Tagde A, Coll M, Fung J, Bryant MP, Cole L, Palmer K, Somaiya P, Karp Leaf R, Nahas M, Apel A, Jain S, McMasters M, Mendez L, Levine J, Joyce R, Arnason J, Pandolfi PP, Kufe D, Rosenblatt J, Avigan D.
    Blood; 2017 Mar 30; 129(13):1791-1801. PubMed ID: 28126925
    [Abstract] [Full Text] [Related]

  • 36. STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients.
    Safarzadeh E, Mohammadi A, Mansoori B, Duijf PHG, Hashemzadeh S, Khaze V, Kazemi T, Derakhshani A, Silvestris N, Baradaran B.
    Front Immunol; 2020 Mar 30; 11():613215. PubMed ID: 33679700
    [Abstract] [Full Text] [Related]

  • 37. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia.
    Nair-Gupta P, Diem M, Reeves D, Wang W, Schulingkamp R, Sproesser K, Mattson B, Heidrich B, Mendonça M, Joseph J, Sendecki J, Foulk B, Chu G, Fink D, Jiao Q, Wu SJ, Packman K, Elsayed Y, Attar R, Gaudet F.
    Blood Adv; 2020 Mar 10; 4(5):906-919. PubMed ID: 32150609
    [Abstract] [Full Text] [Related]

  • 38. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells.
    Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, Zhang C, Meehl M, Chiang DY, Ranganath SH, Rosenzweig M, Brandish PE.
    Mol Cancer Res; 2021 Apr 10; 19(4):702-716. PubMed ID: 33372059
    [Abstract] [Full Text] [Related]

  • 39. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma.
    Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K.
    PLoS One; 2013 Apr 10; 8(2):e57114. PubMed ID: 23437326
    [Abstract] [Full Text] [Related]

  • 40. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer.
    Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X.
    J Immunol; 2013 Apr 01; 190(7):3783-97. PubMed ID: 23440412
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.