These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
585 related items for PubMed ID: 30400863
1. Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis). Zhu J, Wang X, Xu Q, Zhao S, Tai Y, Wei C. BMC Plant Biol; 2018 Nov 06; 18(1):266. PubMed ID: 30400863 [Abstract] [Full Text] [Related]
4. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Zhu J, Xu Q, Zhao S, Xia X, Yan X, An Y, Mi X, Guo L, Samarina L, Wei C. Plant Sci; 2020 Jan 06; 290():110306. PubMed ID: 31779914 [Abstract] [Full Text] [Related]
5. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X. BMC Plant Biol; 2015 Aug 07; 15():190. PubMed ID: 26245644 [Abstract] [Full Text] [Related]
7. Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis. Wu LY, Fang ZT, Lin JK, Sun Y, Du ZZ, Guo YL, Liu JH, Liang YR, Ye JH. J Proteome Res; 2019 Jan 04; 18(1):252-264. PubMed ID: 30427694 [Abstract] [Full Text] [Related]
8. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis. Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, Li M, Jiang X, Wang Y, Gao L, Xia T. J Agric Food Chem; 2018 Apr 25; 66(16):4281-4293. PubMed ID: 29606002 [Abstract] [Full Text] [Related]
9. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X. BMC Plant Biol; 2018 Oct 12; 18(1):233. PubMed ID: 30314466 [Abstract] [Full Text] [Related]
10. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Guo F, Guo Y, Wang P, Wang Y, Ni D. Planta; 2017 Dec 12; 246(6):1139-1152. PubMed ID: 28825226 [Abstract] [Full Text] [Related]
11. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. Wang WL, Wang YX, Li H, Liu ZW, Cui X, Zhuang J. BMC Plant Biol; 2018 Nov 20; 18(1):288. PubMed ID: 30458720 [Abstract] [Full Text] [Related]
12. Functional analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylases from tea plant (Camellia sinensis), involved in the B-ring hydroxylation of flavonoids. Guo L, Gao L, Ma X, Guo F, Ruan H, Bao Y, Xia T, Wang Y. Gene; 2019 Oct 30; 717():144046. PubMed ID: 31434006 [Abstract] [Full Text] [Related]
13. AtHB2, a class II HD-ZIP protein, negatively regulates the expression of CsANS, which encodes a key enzyme in Camellia sinensis catechin biosynthesis. Zhang X, Jiang X, He Y, Li L, Xu P, Sun Z, Li J, Xu J, Xia T, Hong G. Physiol Plant; 2019 Aug 30; 166(4):936-945. PubMed ID: 30357845 [Abstract] [Full Text] [Related]
14. Isolation and dynamic expression of four genes involving in shikimic acid pathway in Camellia sinensis 'Baicha 1' during periodic albinism. Zhu XJ, Zhao Z, Xin HH, Wang ML, Wang WD, Chen X, Li XH. Mol Biol Rep; 2016 Oct 30; 43(10):1119-27. PubMed ID: 27553670 [Abstract] [Full Text] [Related]
15. Transcriptomic and Translatomic Analyses Reveal Insights into the Developmental Regulation of Secondary Metabolism in the Young Shoots of Tea Plants (Camellia sinensis L.). Wu LY, Lv YQ, Ye Y, Liang YR, Ye JH. J Agric Food Chem; 2020 Sep 30; 68(39):10750-10762. PubMed ID: 32818378 [Abstract] [Full Text] [Related]
16. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis. Jiang X, Huang K, Zheng G, Hou H, Wang P, Jiang H, Zhao X, Li M, Zhang S, Liu Y, Gao L, Zhao L, Xia T. Plant Sci; 2018 May 30; 270():209-220. PubMed ID: 29576074 [Abstract] [Full Text] [Related]
17. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. Chen G, Liang H, Zhao Q, Wu AM, Wang B. Int J Biol Macromol; 2020 Jan 15; 143():732-743. PubMed ID: 31622702 [Abstract] [Full Text] [Related]
18. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (Camellia sinensis) Flower. Zhou C, Mei X, Rothenberg DO, Yang Z, Zhang W, Wan S, Yang H, Zhang L. Molecules; 2020 Jan 02; 25(1):. PubMed ID: 31906542 [Abstract] [Full Text] [Related]
19. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, Gao MJ, Gruber MY, Wan XC, Wei S. Plant Cell Environ; 2018 Jan 02; 41(1):176-186. PubMed ID: 28963730 [Abstract] [Full Text] [Related]
20. Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (Camellia Sinensis). Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. Biomolecules; 2020 Feb 16; 10(2):. PubMed ID: 32079100 [Abstract] [Full Text] [Related] Page: [Next] [New Search]