These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 30410537

  • 1. The Key Transcription Factor Expression in the Developing Vestibular and Auditory Sensory Organs: A Comprehensive Comparison of Spatial and Temporal Patterns.
    Liu S, Wang Y, Lu Y, Li W, Liu W, Ma J, Sun F, Li M, Chen ZY, Su K, Li W.
    Neural Plast; 2018; 2018():7513258. PubMed ID: 30410537
    [Abstract] [Full Text] [Related]

  • 2. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea.
    Nishimura K, Noda T, Dabdoub A.
    PLoS One; 2017; 12(1):e0170568. PubMed ID: 28118374
    [Abstract] [Full Text] [Related]

  • 3. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear.
    Lawoko-Kerali G, Rivolta MN, Holley M.
    J Comp Neurol; 2002 Jan 21; 442(4):378-91. PubMed ID: 11793341
    [Abstract] [Full Text] [Related]

  • 4. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A, Sulg M, Heyd F, Alitalo K, Ylä-Herttuala S, Möröy T, Petrova TV, Pirvola U.
    Dev Biol; 2008 Oct 01; 322(1):33-45. PubMed ID: 18652815
    [Abstract] [Full Text] [Related]

  • 5. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis.
    Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B.
    Cell Tissue Res; 2008 Dec 01; 334(3):339-58. PubMed ID: 18985389
    [Abstract] [Full Text] [Related]

  • 6. Expression of Prox1 during mouse cochlear development.
    Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T.
    J Comp Neurol; 2006 May 10; 496(2):172-86. PubMed ID: 16538679
    [Abstract] [Full Text] [Related]

  • 7. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium.
    Zhang T, Xu J, Maire P, Xu PX.
    PLoS Genet; 2017 Sep 10; 13(9):e1006967. PubMed ID: 28892484
    [Abstract] [Full Text] [Related]

  • 8. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti.
    Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B.
    Hear Res; 2011 May 10; 275(1-2):66-80. PubMed ID: 21146598
    [Abstract] [Full Text] [Related]

  • 9. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity.
    Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I.
    PLoS One; 2010 Feb 23; 5(2):e9377. PubMed ID: 20186345
    [Abstract] [Full Text] [Related]

  • 10. Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos.
    Haugas M, Lilleväli K, Salminen M.
    Hear Res; 2012 Jan 23; 283(1-2):151-61. PubMed ID: 22094003
    [Abstract] [Full Text] [Related]

  • 11. From Otic Induction to Hair Cell Production: Pax2EGFP Cell Line Illuminates Key Stages of Development in Mouse Inner Ear Organoid Model.
    Schaefer SA, Higashi AY, Loomis B, Schrepfer T, Wan G, Corfas G, Dressler GR, Duncan RK.
    Stem Cells Dev; 2018 Feb 15; 27(4):237-251. PubMed ID: 29272992
    [Abstract] [Full Text] [Related]

  • 12. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.
    Smeti I, Watabe I, Savary E, Fontbonne A, Zine A.
    PLoS One; 2014 Feb 15; 9(2):e88757. PubMed ID: 24551154
    [Abstract] [Full Text] [Related]

  • 13. Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium.
    Liu Z, Walters BJ, Owen T, Brimble MA, Steigelman KA, Zhang L, Mellado Lagarde MM, Valentine MB, Yu Y, Cox BC, Zuo J.
    J Neurosci; 2012 Aug 01; 32(31):10530-40. PubMed ID: 22855803
    [Abstract] [Full Text] [Related]

  • 14. Islet-1 expression in the developing chicken inner ear.
    Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S.
    J Comp Neurol; 2004 Sep 06; 477(1):1-10. PubMed ID: 15281076
    [Abstract] [Full Text] [Related]

  • 15. Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick.
    Neves J, Kamaid A, Alsina B, Giraldez F.
    J Comp Neurol; 2007 Aug 01; 503(4):487-500. PubMed ID: 17534940
    [Abstract] [Full Text] [Related]

  • 16. Anatomical and physiological development of the human inner ear.
    Lim R, Brichta AM.
    Hear Res; 2016 Aug 01; 338():9-21. PubMed ID: 26900072
    [Abstract] [Full Text] [Related]

  • 17. Expression of LHX3 and SOX2 during mouse inner ear development.
    Hume CR, Bratt DL, Oesterle EC.
    Gene Expr Patterns; 2007 Aug 01; 7(7):798-807. PubMed ID: 17604700
    [Abstract] [Full Text] [Related]

  • 18. Expression of the Pax2 transcription factor is associated with vestibular phenotype in the avian inner ear.
    Warchol ME, Richardson GP.
    Dev Neurobiol; 2007 Aug 01; 69(2-3):191-202. PubMed ID: 19130600
    [Abstract] [Full Text] [Related]

  • 19. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development.
    Steevens AR, Glatzer JC, Kellogg CC, Low WC, Santi PA, Kiernan AE.
    Development; 2019 Jun 21; 146(13):. PubMed ID: 31152002
    [Abstract] [Full Text] [Related]

  • 20. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function.
    Puligilla C, Kelley MW.
    Dev Neurobiol; 2017 Jan 21; 77(1):3-13. PubMed ID: 27203669
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.