These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 30412470
1. Functionalization of silk fibroin through anionic fibroin derived polypeptides. Griffanti G, James-Bhasin M, Donelli I, Freddi G, Nazhat SN. Biomed Mater; 2018 Nov 09; 14(1):015006. PubMed ID: 30412470 [Abstract] [Full Text] [Related]
2. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Griffanti G, Jiang W, Nazhat SN. Biomater Sci; 2019 Feb 26; 7(3):1064-1077. PubMed ID: 30629053 [Abstract] [Full Text] [Related]
3. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Li DW, Lei X, He FL, He J, Liu YL, Ye YJ, Deng X, Duan E, Yin DC. Int J Biol Macromol; 2017 Dec 26; 105(Pt 1):584-597. PubMed ID: 28802849 [Abstract] [Full Text] [Related]
4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X. Int J Nanomedicine; 2016 Dec 26; 11():1483-500. PubMed ID: 27114708 [Abstract] [Full Text] [Related]
5. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S, Xu DP, Liu ZM, Du Y, Wang XK. Int J Mol Med; 2016 Aug 26; 38(2):367-80. PubMed ID: 27352815 [Abstract] [Full Text] [Related]
6. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K, Wang L, Cui S, Wang R. Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():195-207. PubMed ID: 29519429 [Abstract] [Full Text] [Related]
7. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Lai GJ, Shalumon KT, Chen SH, Chen JP. Carbohydr Polym; 2014 Oct 13; 111():288-97. PubMed ID: 25037354 [Abstract] [Full Text] [Related]
8. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S, Arthi N, Arun RP, Verma RS. Mater Sci Eng C Mater Biol Appl; 2019 Sep 13; 102():773-787. PubMed ID: 31147050 [Abstract] [Full Text] [Related]
9. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Singh BN, Panda NN, Mund R, Pramanik K. Carbohydr Polym; 2016 Oct 20; 151():335-347. PubMed ID: 27474575 [Abstract] [Full Text] [Related]
10. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT, Lai GJ, Chen CH, Chen JP. ACS Appl Mater Interfaces; 2015 Sep 30; 7(38):21170-81. PubMed ID: 26355766 [Abstract] [Full Text] [Related]
11. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN, Pramanik K. Biofabrication; 2017 Mar 23; 9(1):015028. PubMed ID: 28332482 [Abstract] [Full Text] [Related]
12. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. Tong S, Xu DP, Liu ZM, Du Y, Wang XK. J Craniofac Surg; 2016 Mar 23; 27(2):509-15. PubMed ID: 26890455 [Abstract] [Full Text] [Related]
13. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Lai GJ, Shalumon KT, Chen JP. Int J Nanomedicine; 2015 Mar 23; 10():567-84. PubMed ID: 25609962 [Abstract] [Full Text] [Related]
14. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W, He J, Sang F, Wang Q, Chen L, Cui S, Ding B. Mater Sci Eng C Mater Biol Appl; 2016 May 23; 62():823-34. PubMed ID: 26952489 [Abstract] [Full Text] [Related]
15. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. Singh BN, Pramanik K. J Biomater Sci Polym Ed; 2018 Nov 23; 29(16):2011-2034. PubMed ID: 30209974 [Abstract] [Full Text] [Related]
16. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG. J Biomed Nanotechnol; 2014 Feb 23; 10(2):287-98. PubMed ID: 24738337 [Abstract] [Full Text] [Related]
17. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J, Zhang H, Zhu J, Cui X, Gao J, Wang X, Xiong J. Colloids Surf B Biointerfaces; 2018 Mar 01; 163():369-378. PubMed ID: 29335199 [Abstract] [Full Text] [Related]
18. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG. J Biomater Appl; 2014 Jul 01; 29(1):46-58. PubMed ID: 24287981 [Abstract] [Full Text] [Related]
19. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI, Cahill PA, Stokes J, McGuinness GB. J Biomater Appl; 2016 Apr 01; 30(9):1334-49. PubMed ID: 26767394 [Abstract] [Full Text] [Related]
20. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G. Int J Biol Macromol; 2017 Feb 01; 95():14-23. PubMed ID: 27818295 [Abstract] [Full Text] [Related] Page: [Next] [New Search]