These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
305 related items for PubMed ID: 30413472
1. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in Rhodobacter sphaeroides. Shimizu T, Teramoto H, Inui M. Appl Environ Microbiol; 2019 Jan 15; 85(2):. PubMed ID: 30413472 [Abstract] [Full Text] [Related]
2. Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism. Shimizu T, Teramoto H, Inui M. Appl Environ Microbiol; 2022 Jun 28; 88(12):e0050722. PubMed ID: 35670584 [Abstract] [Full Text] [Related]
3. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources. Erkal NA, Eser MG, Özgür E, Gündüz U, Eroglu I, Yücel M. Arch Microbiol; 2019 Jul 28; 201(5):661-671. PubMed ID: 30796473 [Abstract] [Full Text] [Related]
4. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Shimizu T, Teramoto H, Inui M. Appl Microbiol Biotechnol; 2019 Dec 28; 103(23-24):9739-9749. PubMed ID: 31696284 [Abstract] [Full Text] [Related]
5. Barriers to 3-Hydroxypropionate-Dependent Growth of Rhodobacter sphaeroides by Distinct Disruptions of the Ethylmalonyl Coenzyme A Pathway. Carlson SJ, Fleig A, Baron MK, Berg IA, Alber BE. J Bacteriol; 2019 Feb 15; 201(4):. PubMed ID: 30455284 [Abstract] [Full Text] [Related]
6. [The mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate pathway: acetate assimilation in Rhodobacter sphaeroides cells]. Filatova LV, Berg IA, Krasil'nikova EN, Tsygankov AA, Laurinavichene TV, Ivanovskiĭ RN. Mikrobiologiia; 2005 Feb 15; 74(3):313-8. PubMed ID: 16119843 [Abstract] [Full Text] [Related]
7. [The mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate pathway: enzymes of the citramalate cycle in Rhodobacter sphaeroides]. Filatova LV, Berg IA, Krasil'nikova EN, Ivanovskiĭ RN. Mikrobiologiia; 2005 Feb 15; 74(3):319-28. PubMed ID: 16119844 [Abstract] [Full Text] [Related]
8. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Laguna R, Tabita FR, Alber BE. Arch Microbiol; 2011 Feb 15; 193(2):151-4. PubMed ID: 21104179 [Abstract] [Full Text] [Related]
9. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G. Mol Microbiol; 2006 Jul 15; 61(2):297-309. PubMed ID: 16856937 [Abstract] [Full Text] [Related]
10. Multiple pathways for acetate assimilation in Streptomyces cinnamonensis. Akopiants K, Florova G, Li C, Reynolds KA. J Ind Microbiol Biotechnol; 2006 Feb 15; 33(2):141-50. PubMed ID: 16187095 [Abstract] [Full Text] [Related]
11. Transcriptional Regulation by the Short-Chain Fatty Acyl Coenzyme A Regulator (ScfR) PccR Controls Propionyl Coenzyme A Assimilation by Rhodobacter sphaeroides. Carter MS, Alber BE. J Bacteriol; 2015 Oct 15; 197(19):3048-56. PubMed ID: 26170412 [Abstract] [Full Text] [Related]
12. Roles of the crotonyl-CoA carboxylase/reductase homologues in acetate assimilation and biosynthesis of immunosuppressant FK506 in Streptomyces tsukubaensis. Blažič M, Kosec G, Baebler Š, Gruden K, Petković H. Microb Cell Fact; 2015 Oct 14; 14():164. PubMed ID: 26466669 [Abstract] [Full Text] [Related]
13. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides. Kobayashi J, Yoshimune K, Komoriya T, Kohno H. J Biosci Bioeng; 2011 Dec 14; 112(6):602-5. PubMed ID: 21903465 [Abstract] [Full Text] [Related]
14. L-malyl-coenzyme A/beta-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. Meister M, Saum S, Alber BE, Fuchs G. J Bacteriol; 2005 Feb 14; 187(4):1415-25. PubMed ID: 15687206 [Abstract] [Full Text] [Related]
15. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes. Gabrielyan L, Sargsyan H, Trchounian A. Microb Cell Fact; 2015 Sep 04; 14():131. PubMed ID: 26337489 [Abstract] [Full Text] [Related]
16. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE. Proc Natl Acad Sci U S A; 2007 Jun 19; 104(25):10631-6. PubMed ID: 17548827 [Abstract] [Full Text] [Related]
18. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253. Jaapar SZ, Kalil MS, Anuar N. Pak J Biol Sci; 2009 Sep 15; 12(18):1253-9. PubMed ID: 20384278 [Abstract] [Full Text] [Related]
20. Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides. Ipekoğlu EM, Göçmen K, Öz MT, Gürgan M, Yücel M. J Basic Microbiol; 2017 Mar 15; 57(3):238-244. PubMed ID: 27902845 [Abstract] [Full Text] [Related] Page: [Next] [New Search]