These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 3042168
1. Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Jiménez J, Benítez T. Curr Genet; 1988 Jun; 13(6):461-9. PubMed ID: 3042168 [Abstract] [Full Text] [Related]
2. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Ibeas JI, Jimenez J. Appl Environ Microbiol; 1997 Jan; 63(1):7-12. PubMed ID: 8979333 [Abstract] [Full Text] [Related]
3. Deficiencies in mitochondrial DNA compromise the survival of yeast cells at critically high temperatures. Zubko EI, Zubko MK. Microbiol Res; 2014 Jan; 169(2-3):185-95. PubMed ID: 23890722 [Abstract] [Full Text] [Related]
4. Induction of petite yeast mutants by membrane-active agents. Jiménez J, Longo E, Benítez T. Appl Environ Microbiol; 1988 Dec; 54(12):3126-32. PubMed ID: 3066293 [Abstract] [Full Text] [Related]
5. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast. Watson K, Dunlop G, Cavicchioli R. FEBS Lett; 1984 Jul 09; 172(2):299-302. PubMed ID: 6378658 [Abstract] [Full Text] [Related]
6. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. Caspeta L, Nielsen J. mBio; 2015 Jul 21; 6(4):e00431. PubMed ID: 26199325 [Abstract] [Full Text] [Related]
8. Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts. Castrejón F, Codón AC, Cubero B, Benítez T. Syst Appl Microbiol; 2002 Oct 21; 25(3):462-7. PubMed ID: 12421085 [Abstract] [Full Text] [Related]
9. Induction of rho- mutations in yeast Saccharomyces cerevisiae by ethanol. Bandas EL, Zakharov IA. Mutat Res; 1980 Jul 21; 71(2):193-9. PubMed ID: 6993934 [Abstract] [Full Text] [Related]
11. Effects of T-2 toxin on induction of petite mutants and mitochondrial function in Saccharomyces cerevisiae. Schappert KT, Khachatourians GG. Curr Genet; 1986 Jul 21; 10(9):671-6. PubMed ID: 3329043 [Abstract] [Full Text] [Related]
12. Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Martínez P, Codón AC, Pérez L, Benítez T. Yeast; 1995 Nov 21; 11(14):1399-411. PubMed ID: 8585323 [Abstract] [Full Text] [Related]
15. Physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex. Kunicka-Styczyńska A, Rajkowska K. J Appl Microbiol; 2011 Jun 21; 110(6):1538-49. PubMed ID: 21438966 [Abstract] [Full Text] [Related]
16. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Aguilera A, Benítez T. Arch Microbiol; 1985 Sep 21; 142(4):389-92. PubMed ID: 3904658 [Abstract] [Full Text] [Related]
18. Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Arroyo-López FN, Salvadó Z, Tronchoni J, Guillamón JM, Barrio E, Querol A. Yeast; 2010 Dec 21; 27(12):1005-15. PubMed ID: 20824889 [Abstract] [Full Text] [Related]
19. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Chen S, Xu Y. Appl Biochem Biotechnol; 2014 Aug 21; 173(7):1940-54. PubMed ID: 24879599 [Abstract] [Full Text] [Related]
20. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. Appl Environ Microbiol; 2009 Oct 21; 75(19):6055-61. PubMed ID: 19666729 [Abstract] [Full Text] [Related] Page: [Next] [New Search]