These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 30424582

  • 1. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon.
    de Paula RL, de Almeida JSFD, Cavalcante SFA, Gonçalves AS, Simas ABC, Franca TCC, Valis M, Kuca K, Nepovimova E, Granjeiro JM.
    Molecules; 2018 Nov 12; 23(11):. PubMed ID: 30424582
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Discovery of (E)-2-(hydroxyimino)-N-(2 ((4methylpentyl)amino)ethyl)acetamide (KR-27425) as a non-pyridinium oxime reactivator of paraoxon-inhibited acetylcholinesterase.
    Vishakantegowda AG, Girmay BS, Shin JS, Lee JY, Ahn S, Jung YS.
    Bioorg Med Chem Lett; 2023 Nov 15; 96():129504. PubMed ID: 37838342
    [Abstract] [Full Text] [Related]

  • 4. Fluorinated pyridinium oximes as potential reactivators for acetylcholinesterases inhibited by paraoxon organophosphorus agent.
    Jeong HC, Park NJ, Chae CH, Musilek K, Kassa J, Kuca K, Jung YS.
    Bioorg Med Chem; 2009 Sep 01; 17(17):6213-7. PubMed ID: 19665386
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Novel tacrine-pyridinium hybrid reactivators of organophosphorus-inhibited acetylcholinesterase: Synthesis, molecular docking, and in vitro reactivation study.
    Kim J, Malpani YR, Lee J, Shin JS, Han SB, Jung YS.
    Bioorg Med Chem Lett; 2018 Dec 15; 28(23-24):3784-3786. PubMed ID: 30301674
    [Abstract] [Full Text] [Related]

  • 7. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker: preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase.
    Musilek K, Holas O, Jun D, Dohnal V, Gunn-Moore F, Opletalova V, Dolezal M, Kuca K.
    Bioorg Med Chem; 2007 Nov 01; 15(21):6733-41. PubMed ID: 17764957
    [Abstract] [Full Text] [Related]

  • 8. Synthesis, Molecular Docking, BSA, and In Vitro Reactivation Study of Imidazopyridine Oximes Against Paraoxon Inhibited Acetylcholinesterase.
    Thakur A, Patwa J, Sharma A, Flora SJS.
    Med Chem; 2022 Nov 01; 18(2):273-287. PubMed ID: 33563155
    [Abstract] [Full Text] [Related]

  • 9. In silico and in vitro evaluation of two novel oximes (K378 and K727) in comparison to K-27 and pralidoxime against paraoxon-ethyl intoxication.
    Arshad M, Fatmi MQ, Musilek K, Hussain A, Kuca K, Petroianu G, Kalasz H, Nurulain SM.
    Toxicol Mech Methods; 2018 Jan 01; 28(1):62-68. PubMed ID: 28722512
    [Abstract] [Full Text] [Related]

  • 10. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon.
    Petroianu GA, Arafat K, Kuca K, Kassa J.
    J Appl Toxicol; 2006 Jan 01; 26(1):64-71. PubMed ID: 16193529
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Reactivation potency of two novel oximes (K456 and K733) against paraoxon-inhibited acetyl and butyrylcholinesterase: In silico and in vitro models.
    Iqbal A, Malik S, Nurulain SM, Musilek K, Kuca K, Kalasz H, Fatmi MQ.
    Chem Biol Interact; 2019 Sep 01; 310():108735. PubMed ID: 31276662
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Zn(II)/pyridyloxime complexes as potential reactivators of OP-inhibited acetylcholinesterase: in vitro and docking simulation studies.
    Konidaris KF, Dalkas GA, Katsoulakou E, Pairas G, Raptopoulou CP, Lamari FN, Spyroulias GA, Manessi-Zoupa E.
    J Inorg Biochem; 2014 May 01; 134():12-9. PubMed ID: 24518538
    [Abstract] [Full Text] [Related]

  • 15. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.
    Herkert NM, Lallement G, Clarençon D, Thiermann H, Worek F.
    Toxicology; 2009 Apr 28; 258(2-3):79-83. PubMed ID: 19428926
    [Abstract] [Full Text] [Related]

  • 16. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase.
    Winter M, Wille T, Musilek K, Kuca K, Thiermann H, Worek F.
    Toxicol Lett; 2016 Feb 26; 244():136-142. PubMed ID: 26210933
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Oxime-induced reactivation of acetylcholinesterase inhibited by phosphoramidates.
    Jokanović M, Maksimović M, Kilibarda V, Jovanović D, Savić D.
    Toxicol Lett; 1996 Apr 26; 85(1):35-9. PubMed ID: 8619258
    [Abstract] [Full Text] [Related]

  • 20. New oxime reactivators connected with CH2O(CH2)nOCH2 linker and their reactivation potency for organophosphorus agents-inhibited acetylcholinesterase.
    Yang GY, Oh KA, Park NJ, Jung YS.
    Bioorg Med Chem; 2007 Dec 15; 15(24):7704-10. PubMed ID: 17869525
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.