These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 30425488
1. Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study. Sun L, Xu J, Sun Z, Zheng F, Liu C, Wang C, Hu X, Xia L, Liu Z, Xia R. Int J Nanomedicine; 2018; 13():6769-6777. PubMed ID: 30425488 [Abstract] [Full Text] [Related]
2. [Influence of antimicrobial peptide biofunctionalized TiO2 nanotubes on the biological behavior of human keratinocytes and its antibacterial effect]. Li Y, Wang JJ, He YD, Xu M, Li XY, Xu BY, Zhang YM. Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Feb 09; 58(2):165-173. PubMed ID: 36746450 [Abstract] [Full Text] [Related]
3. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Lin WT, Tan HL, Duan ZL, Yue B, Ma R, He G, Tang TT. Int J Nanomedicine; 2014 Feb 09; 9():1215-30. PubMed ID: 24634583 [Abstract] [Full Text] [Related]
4. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Hashemi A, Ezati M, Mohammadnejad J, Houshmand B, Faghihi S. Int J Nanomedicine; 2020 Feb 09; 15():4471-4481. PubMed ID: 32606689 [Abstract] [Full Text] [Related]
5. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G, Jin S, Tang T. Int J Nanomedicine; 2013 Feb 09; 8():3093-105. PubMed ID: 23983463 [Abstract] [Full Text] [Related]
6. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Lai M, Jin Z, Su Z. Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():490-497. PubMed ID: 28183637 [Abstract] [Full Text] [Related]
7. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO₂ nanoparticle-decorated TiO₂ nanotubes. Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ. Nanomedicine (Lond); 2015 Apr 01; 10(5):713-23. PubMed ID: 25816875 [Abstract] [Full Text] [Related]
8. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Mei S, Wang H, Wang W, Tong L, Pan H, Ruan C, Ma Q, Liu M, Yang H, Zhang L, Cheng Y, Zhang Y, Zhao L, Chu PK. Biomaterials; 2014 May 01; 35(14):4255-65. PubMed ID: 24565524 [Abstract] [Full Text] [Related]
9. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO2 nanotubes/Ti foil composite. Zhao Y, Lu R, Wang X, Huai X, Wang C, Wang Y, Chen S. Nanotechnology; 2021 May 07; 32(19):195101. PubMed ID: 33513586 [Abstract] [Full Text] [Related]
10. The controlled naringin release from TiO2 nanotubes to regulate osteoblast differentiation. Lai M, Jin Z, Yan M, Zhu J, Yan X, Xu K. J Biomater Appl; 2018 Nov 07; 33(5):673-680. PubMed ID: 30388387 [Abstract] [Full Text] [Related]
11. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Zhang H, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, Bai X. Int J Nanomedicine; 2013 Nov 07; 8():4379-89. PubMed ID: 24403827 [Abstract] [Full Text] [Related]
12. Titania (TiO2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. Bhattacharjee A, Pereira B, Soares P, Popat KC. Nanoscale; 2024 Jul 04; 16(26):12510-12522. PubMed ID: 38874593 [Abstract] [Full Text] [Related]
13. Crystallinity of TiO2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. Dias-Netipanyj MF, Sopchenski L, Gradowski T, Elifio-Esposito S, Popat KC, Soares P. J Mater Sci Mater Med; 2020 Oct 31; 31(11):94. PubMed ID: 33128627 [Abstract] [Full Text] [Related]
14. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J. Colloids Surf B Biointerfaces; 2016 Aug 01; 144():265-275. PubMed ID: 27100853 [Abstract] [Full Text] [Related]
15. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Colloids Surf B Biointerfaces; 2018 Nov 01; 171():597-605. PubMed ID: 30099296 [Abstract] [Full Text] [Related]
16. Effects on Antibacterial Activity and Osteoblast Viability of Non-Thermal Atmospheric Pressure Plasma and Heat Treatments of TiO2 Nanotubes. Ji MK, Oh G, Kim JW, Park S, Yun KD, Bae JC, Lim HP. J Nanosci Nanotechnol; 2017 Apr 01; 17(4):2312-315. PubMed ID: 29638654 [Abstract] [Full Text] [Related]
17. Fabrication and antibacterial properties of cefuroxime-loaded TiO2 nanotubes. Niu X, Sun L, Zhang X, Sun Y, Wang J. Appl Microbiol Biotechnol; 2020 Apr 01; 104(7):2947-2955. PubMed ID: 32055911 [Abstract] [Full Text] [Related]
18. Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. Saha S, Pramanik K, Biswas A. Mater Sci Eng C Mater Biol Appl; 2019 Dec 01; 105():109982. PubMed ID: 31546427 [Abstract] [Full Text] [Related]
19. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. Uhm SH, Song DH, Kwon JS, Lee SB, Han JG, Kim KN. J Biomed Mater Res B Appl Biomater; 2014 Apr 01; 102(3):592-603. PubMed ID: 24123999 [Abstract] [Full Text] [Related]
20. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo. Shen X, Al-Baadani MA, He H, Cai L, Wu Z, Yao L, Wu X, Wu S, Chen M, Zhang H, Liu J. Int J Nanomedicine; 2019 Apr 01; 14():3043-3054. PubMed ID: 31118621 [Abstract] [Full Text] [Related] Page: [Next] [New Search]