These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 30426173

  • 1. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq.
    Park M, Lee JH, Han K, Jang S, Han J, Lim JH, Jung JW, Kang BC.
    Theor Appl Genet; 2019 Feb; 132(2):515-529. PubMed ID: 30426173
    [Abstract] [Full Text] [Related]

  • 2. Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum.
    Blum E, Mazourek M, O'Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I.
    Theor Appl Genet; 2003 Dec; 108(1):79-86. PubMed ID: 13679988
    [Abstract] [Full Text] [Related]

  • 3. QTL analysis for capsaicinoid content in Capsicum.
    Ben-Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M.
    Theor Appl Genet; 2006 Nov; 113(8):1481-90. PubMed ID: 16960715
    [Abstract] [Full Text] [Related]

  • 4. Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense).
    Tanaka Y, Nakashima F, Kirii E, Goto T, Yoshida Y, Yasuba KI.
    Plant Cell Rep; 2017 Feb; 36(2):267-279. PubMed ID: 27873007
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.).
    Zhang XF, Wang GY, Dong TT, Chen B, Du HS, Li CB, Zhang FL, Zhang HY, Xu Y, Wang Q, Geng SS.
    BMC Plant Biol; 2019 Apr 29; 19(1):167. PubMed ID: 31035914
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.).
    Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N.
    Plant Cell Rep; 2011 May 29; 30(5):695-706. PubMed ID: 21161234
    [Abstract] [Full Text] [Related]

  • 11. Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population.
    Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A.
    Genome; 2013 Jan 29; 56(1):61-74. PubMed ID: 23379339
    [Abstract] [Full Text] [Related]

  • 12. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato.
    Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I.
    Theor Appl Genet; 2005 Aug 29; 111(3):437-45. PubMed ID: 15983758
    [Abstract] [Full Text] [Related]

  • 13. Genetic analysis of pungency deficiency in Japanese chili pepper 'Shishito' (Capsicum annuum) revealed its unique heredity and brought the discovery of two genetic loci involved with the reduction of pungency.
    Kondo F, Umeda K, Sudasinghe SP, Yamaguchi M, Aratani S, Kumanomido Y, Nemoto K, Nagano AJ, Matsushima K.
    Mol Genet Genomics; 2023 Jan 29; 298(1):201-212. PubMed ID: 36374297
    [Abstract] [Full Text] [Related]

  • 14. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.
    Liu S, Li W, Wu Y, Chen C, Lei J.
    PLoS One; 2013 Jan 29; 8(1):e48156. PubMed ID: 23349661
    [Abstract] [Full Text] [Related]

  • 15. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum.
    Koeda S, Sato K, Saito H, Nagano AJ, Yasugi M, Kudoh H, Tanaka Y.
    Theor Appl Genet; 2019 Jan 29; 132(1):65-80. PubMed ID: 30267113
    [Abstract] [Full Text] [Related]

  • 16. The pungent-variable sweet chili pepper 'Shishito' (Capsicum annuum) provides insights regarding the relationship between pungency, the number of seeds, and gene expression involving capsaicinoid biosynthesis.
    Kondo F, Hatakeyama K, Sakai A, Minami M, Nemoto K, Matsushima K.
    Mol Genet Genomics; 2021 May 29; 296(3):591-603. PubMed ID: 33599813
    [Abstract] [Full Text] [Related]

  • 17. A MYB transcription factor is a candidate to control pungency in Capsicum annuum.
    Han K, Jang S, Lee JH, Lee DG, Kwon JK, Kang BC.
    Theor Appl Genet; 2019 Apr 29; 132(4):1235-1246. PubMed ID: 30607439
    [Abstract] [Full Text] [Related]

  • 18. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping.
    Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa'ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N.
    Plant J; 2018 Apr 29; 94(1):169-191. PubMed ID: 29385635
    [Abstract] [Full Text] [Related]

  • 19. Genetic control of pungency in C. chinense via the Pun1 locus.
    Stewart C, Mazourek M, Stellari GM, O'Connell M, Jahn M.
    J Exp Bot; 2007 Apr 29; 58(5):979-91. PubMed ID: 17339653
    [Abstract] [Full Text] [Related]

  • 20. Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens).
    Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC.
    Theor Appl Genet; 2017 Jan 29; 130(1):41-52. PubMed ID: 27650192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.