These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 30441336
1. Finger-Worn Sensors for Accurate Functional Assessment of the Upper Limbs in Real-World Settings. Liu X, Rajan S, Ramasarma N, Bonato P, Lee SI. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4440-4443. PubMed ID: 30441336 [Abstract] [Full Text] [Related]
2. A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting. Lee SI, Liu X, Rajan S, Ramasarma N, Choe EK, Bonato P. PLoS One; 2019 Jul; 14(3):e0212484. PubMed ID: 30893308 [Abstract] [Full Text] [Related]
3. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings. Liu X, Rajan S, Ramasarma N, Bonato P, Lee SI. IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103 [Abstract] [Full Text] [Related]
4. Towards the Ambulatory Assessment of Movement Quality in Stroke Survivors using a Wrist-worn Inertial Sensor. Lee SI, Jung HT, Park J, Jeong J, Ryu T, Kim Y, Santos VSD, Miranda JGV, Daneault JF. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2825-2828. PubMed ID: 30440989 [Abstract] [Full Text] [Related]
5. Real-World Functional Grasping Activity in Individuals With Stroke and Healthy Controls Using a Novel Wearable Wrist Sensor. Yang CL, Liu J, Simpson LA, Menon C, Eng JJ. Neurorehabil Neural Repair; 2021 Oct; 35(10):929-937. PubMed ID: 34510935 [Abstract] [Full Text] [Related]
6. Accelerometer-Based Monitoring of Upper Limb Movement in Older Adults With Acute and Subacute Stroke. Narai E, Hagino H, Komatsu T, Togo F. J Geriatr Phys Ther; 2016 Oct; 39(4):171-7. PubMed ID: 26428901 [Abstract] [Full Text] [Related]
7. Envisioning the use of in-situ arm movement data in stroke rehabilitation: Stroke survivors' and occupational therapists' perspectives. Jung HT, Kim Y, Lee J, Lee SI, Choe EK. PLoS One; 2022 Oct; 17(10):e0274142. PubMed ID: 36264782 [Abstract] [Full Text] [Related]
8. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ, Ruff RL. ScientificWorldJournal; 2007 Dec 20; 7():2031-45. PubMed ID: 18167618 [Abstract] [Full Text] [Related]
9. Whole-Body Movements Increase Arm Use Outcomes of Wrist-Worn Accelerometers in Stroke Patients. Regterschot GRH, Selles RW, Ribbers GM, Bussmann JBJ. Sensors (Basel); 2021 Jun 25; 21(13):. PubMed ID: 34202142 [Abstract] [Full Text] [Related]
10. A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers. Lang CE, Waddell KJ, Klaesner JW, Bland MD. J Vis Exp; 2017 Apr 21; (122):. PubMed ID: 28518079 [Abstract] [Full Text] [Related]
11. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E, Paraskevopoulos IT, Warland A, Kilbride C. Disabil Rehabil Assist Technol; 2016 Apr 21; 11(5):413-22. PubMed ID: 25391221 [Abstract] [Full Text] [Related]
12. Activities of Daily Living-Based Rehabilitation System for Arm and Hand Motor Function Retraining After Stroke. Song X, Van De Ven SS, Liu L, Wouda FJ, Wang H, Shull PB. IEEE Trans Neural Syst Rehabil Eng; 2022 Apr 21; 30():621-631. PubMed ID: 35239484 [Abstract] [Full Text] [Related]
13. Continuous monitoring of upper-limb activity in a free-living environment. Vega-González A, Granat MH. Arch Phys Med Rehabil; 2005 Mar 21; 86(3):541-8. PubMed ID: 15759242 [Abstract] [Full Text] [Related]
14. Upper-extremity stroke therapy task discrimination using motion sensors and electromyography. Giuffrida JP, Lerner A, Steiner R, Daly J. IEEE Trans Neural Syst Rehabil Eng; 2008 Feb 21; 16(1):82-90. PubMed ID: 18303809 [Abstract] [Full Text] [Related]
15. Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning. Bochniewicz EM, Emmer G, McLeod A, Barth J, Dromerick AW, Lum P. J Stroke Cerebrovasc Dis; 2017 Dec 21; 26(12):2880-2887. PubMed ID: 28781056 [Abstract] [Full Text] [Related]
16. Visualisation of upper limb activity using spirals: A new approach to the assessment of daily prosthesis usage. Chadwell A, Kenney L, Granat M, Thies S, Head JS, Galpin A. Prosthet Orthot Int; 2018 Feb 21; 42(1):37-44. PubMed ID: 28650213 [Abstract] [Full Text] [Related]
17. Time-Based and Path-Based Analysis of Upper-Limb Movements during Activities of Daily Living. Šlajpah S, Čebašek E, Munih M, Mihelj M. Sensors (Basel); 2023 Jan 23; 23(3):. PubMed ID: 36772329 [Abstract] [Full Text] [Related]
18. Classification of functional and non-functional arm use by inertial measurement units in individuals with upper limb impairment after stroke. Pohl J, Ryser A, Veerbeek JM, Verheyden G, Vogt JE, Luft AR, Awai Easthope C. Front Physiol; 2022 Jan 23; 13():952757. PubMed ID: 36246133 [Abstract] [Full Text] [Related]
19. Accelerometer assessed upper limb activity in people with stroke: a validation study considering ambulatory and non-ambulatory activities. Bezuidenhout L, Joseph C, Einarsson U, Thurston C, Hagströmer M, Moulaee Conradsson D. Disabil Rehabil; 2022 Dec 23; 44(26):8463-8470. PubMed ID: 34904504 [Abstract] [Full Text] [Related]
20. Concurrent Validity of Different Sensor-Based Measures: Activity Counts Do Not Reflect Functional Hand Use in Children and Adolescents With Upper Limb Impairments. Rast FM, Labruyère R. Arch Phys Med Rehabil; 2022 Oct 23; 103(10):1967-1974. PubMed ID: 35439522 [Abstract] [Full Text] [Related] Page: [Next] [New Search]