These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 30444271
1. Proanthocyanidins with a Low Degree of Polymerization are Good Inhibitors of Digestive Enzymes Because of their Ability to form Specific Interactions: A Hypothesis. Vazquez-Flores AA, Martinez-Gonzalez AI, Alvarez-Parrilla E, Díaz-Sánchez ÁG, de la Rosa LA, González-Aguilar GA, Aguilar CN. J Food Sci; 2018 Dec; 83(12):2895-2902. PubMed ID: 30444271 [Abstract] [Full Text] [Related]
2. Chemical Characterization and Release of Polyphenols from Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] in Zein Microparticles for Bioactive Applications. Kureck I, Policarpi PB, Toaldo IM, Maciel MVOB, Bordignon-Luiz MT, Barreto PLM, Block JM. Plant Foods Hum Nutr; 2018 Jun; 73(2):137-145. PubMed ID: 29725928 [Abstract] [Full Text] [Related]
3. The Effects of Different Degrees of Procyanidin Polymerization on the Nutrient Absorption and Digestive Enzyme Activity in Mice. Zhong H, Xue Y, Lu X, Shao Q, Cao Y, Wu Z, Chen G. Molecules; 2018 Nov 08; 23(11):. PubMed ID: 30413083 [Abstract] [Full Text] [Related]
4. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles. Jia X, Luo H, Xu M, Zhai M, Guo Z, Qiao Y, Wang L. Molecules; 2018 Feb 16; 23(2):. PubMed ID: 29462910 [Abstract] [Full Text] [Related]
5. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. Gu Y, Hurst WJ, Stuart DA, Lambert JD. J Agric Food Chem; 2011 May 25; 59(10):5305-11. PubMed ID: 21495725 [Abstract] [Full Text] [Related]
6. RNA-Seq Reveals Flavonoid Biosynthesis-Related Genes in Pecan ( Carya illinoinensis) Kernels. Zhang C, Yao X, Ren H, Chang J, Wang K. J Agric Food Chem; 2019 Jan 09; 67(1):148-158. PubMed ID: 30563335 [Abstract] [Full Text] [Related]
7. Impact of pecan nut shell aqueous extract on the oxidative properties of margarines during storage. Engler Ribeiro PC, de Britto Policarpi P, Dal Bo A, Barbetta PA, Block JM. J Sci Food Agric; 2017 Jul 09; 97(9):3005-3012. PubMed ID: 27859283 [Abstract] [Full Text] [Related]
8. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice. Hilbig J, Policarpi PB, Grinevicius VMAS, Mota NSRS, Toaldo IM, Luiz MTB, Pedrosa RC, Block JM. J Ethnopharmacol; 2018 Jan 30; 211():256-266. PubMed ID: 28807853 [Abstract] [Full Text] [Related]
9. Improved analysis of grape seed extract by liquid chromatography-high resolution mass spectrometry (LC-HRMS) reveals that proanthocyanidin-protein interaction mechanisms in cream depend on degree of polymerization. Liu C, Lea Girard A, William Hartel R, Warren Bolling B. Food Chem; 2024 Sep 01; 451():139432. PubMed ID: 38678655 [Abstract] [Full Text] [Related]
10. Profiles and α-amylase inhibition activity of proanthocyanidins in unripe Manilkara zapota (chiku). Wang H, Liu T, Song L, Huang D. J Agric Food Chem; 2012 Mar 28; 60(12):3098-104. PubMed ID: 22394060 [Abstract] [Full Text] [Related]
11. Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Bouali I, Trabelsi H, Herchi W, Martine L, Albouchi A, Bouzaien G, Sifi S, Boukhchina S, Berdeaux O. Food Chem; 2014 Dec 01; 164():309-16. PubMed ID: 24996339 [Abstract] [Full Text] [Related]
12. Extraction of phenolic compounds from the shells of pecan nuts with cytotoxic activity through apoptosis against the colon cancer cell line HT-29. Ribas LE, Baravalle ME, Gasser FB, Renna MS, Addona S, Ortega HH, Savino GH, Van de Velde F, Hein GJ. J Food Sci; 2021 Dec 01; 86(12):5409-5423. PubMed ID: 34730241 [Abstract] [Full Text] [Related]
13. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Domínguez-Avila JA, Alvarez-Parrilla E, López-Díaz JA, Maldonado-Mendoza IE, Gómez-García Mdel C, de la Rosa LA. Food Chem; 2015 Feb 01; 168():529-37. PubMed ID: 25172744 [Abstract] [Full Text] [Related]
14. Influence of Degree-of-Polymerization and Linkage on the Quantification of Proanthocyanidins using 4-Dimethylaminocinnamaldehyde (DMAC) Assay. Wang Y, Singh AP, Hurst WJ, Glinski JA, Koo H, Vorsa N. J Agric Food Chem; 2016 Mar 23; 64(11):2190-9. PubMed ID: 26923226 [Abstract] [Full Text] [Related]
15. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components. Neilson AP, O'Keefe SF, Bolling BW. Annu Rev Food Sci Technol; 2016 Mar 23; 7():43-64. PubMed ID: 26735794 [Abstract] [Full Text] [Related]
16. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Zhu W, Oteiza PI. Crit Rev Food Sci Nutr; 2024 Mar 23; 64(2):220-240. PubMed ID: 35943169 [Abstract] [Full Text] [Related]
17. Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [Carya illinoinensis (Wangenh.) K. Koch]. Porto LC, da Silva J, Ferraz Ade B, Corrêa DS, dos Santos MS, Porto CD, Picada JN. Food Chem Toxicol; 2013 Sep 23; 59():579-85. PubMed ID: 23831307 [Abstract] [Full Text] [Related]
18. Separation of Ellagitannin-Rich Phenolics from U.S. Pecans and Chinese Hickory Nuts Using Fused-Core HPLC Columns and Their Characterization. Gong Y, Pegg RB. J Agric Food Chem; 2017 Jul 19; 65(28):5810-5820. PubMed ID: 28648053 [Abstract] [Full Text] [Related]