These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. He X, Fan X, Feng W, Chen Y, Guo T, Wang F, Liu J, Tang K. Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955 [Abstract] [Full Text] [Related]
4. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Shaheen TI, Montaser AS, Li S. Int J Biol Macromol; 2019 Jan; 121():814-821. PubMed ID: 30342123 [Abstract] [Full Text] [Related]
5. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Martínez Ávila H, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P. Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132 [Abstract] [Full Text] [Related]
9. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Osorio DA, Lee BEJ, Kwiecien JM, Wang X, Shahid I, Hurley AL, Cranston ED, Grandfield K. Acta Biomater; 2019 Mar 15; 87():152-165. PubMed ID: 30710708 [Abstract] [Full Text] [Related]
10. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M. Carbohydr Polym; 2015 Nov 05; 132():146-55. PubMed ID: 26256335 [Abstract] [Full Text] [Related]
11. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Stanisławska A, Staroszczyk H, Szkodo M. Carbohydr Polym; 2020 May 15; 236():116023. PubMed ID: 32172842 [Abstract] [Full Text] [Related]
12. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. J Mech Behav Biomed Mater; 2014 Nov 15; 39():95-110. PubMed ID: 25117379 [Abstract] [Full Text] [Related]
13. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C. Int J Biol Macromol; 2017 Apr 15; 97():568-573. PubMed ID: 28087448 [Abstract] [Full Text] [Related]
15. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro. Khalid P, Hussain MA, Rekha PD, Arun AB. Hum Exp Toxicol; 2015 May 15; 34(5):548-56. PubMed ID: 25233896 [Abstract] [Full Text] [Related]
16. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility. Sun J, Zheng X, Li H, Fan D, Song Z, Ma H, Hua X, Hui J. Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():596-602. PubMed ID: 28183650 [Abstract] [Full Text] [Related]
17. Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering. Dos Santos Menezes L, Navarro da Rocha D, Nonato RC, Costa AR, Morales AR, Correr-Sobrinho L, Correr AB, Neves JG. Proc Inst Mech Eng H; 2024 Jul 01; 238(7):793-802. PubMed ID: 38902971 [Abstract] [Full Text] [Related]
18. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. Shakir M, Jolly R, Khan MS, Iram Ne, Khan HM. Int J Biol Macromol; 2015 Sep 01; 80():282-92. PubMed ID: 26116779 [Abstract] [Full Text] [Related]
19. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L, Chen L, Peng H, Ji M, Xiong Y, Lv G. J Biomater Sci Polym Ed; 2017 Dec 01; 28(18):2154-2170. PubMed ID: 28950766 [Abstract] [Full Text] [Related]