These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 30450825
1. Technical Note: More accurate and efficient segmentation of organs-at-risk in radiotherapy with convolutional neural networks cascades. Men K, Geng H, Cheng C, Zhong H, Huang M, Fan Y, Plastaras JP, Lin A, Xiao Y. Med Phys; 2019 Jan; 46(1):286-292. PubMed ID: 30450825 [Abstract] [Full Text] [Related]
3. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B, Xing L. Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [Abstract] [Full Text] [Related]
4. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N, Gou S, Yang S, Ruan D, Sheng K. Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [Abstract] [Full Text] [Related]
6. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S, Chang CW, Wang T, Wynne J, Hu M, Lei Y, Liu T, Patel P, Roper J, Yang X. Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [Abstract] [Full Text] [Related]
7. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J, Zhang J, Qiu B, Liu Y, Liu X, Chen L. Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [Abstract] [Full Text] [Related]
8. Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT. Hirashima H, Nakamura M, Baillehache P, Fujimoto Y, Nakagawa S, Saruya Y, Kabasawa T, Mizowaki T. Radiat Oncol; 2021 Jul 22; 16(1):135. PubMed ID: 34294090 [Abstract] [Full Text] [Related]
10. Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images. Zhang Z, Zhao T, Gay H, Zhang W, Sun B. Med Phys; 2021 Nov 22; 48(11):7052-7062. PubMed ID: 34655077 [Abstract] [Full Text] [Related]
12. Comparison between atlas and convolutional neural network based automatic segmentation of multiple organs at risk in non-small cell lung cancer. Zhang T, Yang Y, Wang J, Men K, Wang X, Deng L, Bi N. Medicine (Baltimore); 2020 Aug 21; 99(34):e21800. PubMed ID: 32846816 [Abstract] [Full Text] [Related]
15. Accurate and robust auto-segmentation of head and neck organ-at-risks based on a novel CNN fine-tuning workflow. Luan S, Wu K, Wu Y, Zhu B, Wei W, Xue X. J Appl Clin Med Phys; 2024 Jan 21; 25(1):e14248. PubMed ID: 38128058 [Abstract] [Full Text] [Related]
16. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images. Gou S, Tong N, Qi S, Yang S, Chin R, Sheng K. Phys Med Biol; 2020 Dec 11; 65(24):245034. PubMed ID: 32097892 [Abstract] [Full Text] [Related]
19. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH, Yeo AU, Kim KH, Kim C, Goh Y, Cho S, Lee SB, Lim YK, Kim H, Shin D, Kim T, Kim TH, Youn SH, Oh ES, Jeong JH. Radiat Oncol; 2019 Nov 27; 14(1):213. PubMed ID: 31775825 [Abstract] [Full Text] [Related]