These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
401 related items for PubMed ID: 30456694
21. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors. Yacyshyn AF, Kuzyk S, Jakobi JM, McNeil CJ. J Neurophysiol; 2020 Feb 01; 123(2):522-528. PubMed ID: 31774348 [Abstract] [Full Text] [Related]
22. Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort. Hahn D, Hoffman BW, Carroll TJ, Cresswell AG. PLoS One; 2012 Feb 01; 7(11):e49907. PubMed ID: 23166794 [Abstract] [Full Text] [Related]
23. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement. Forman DA, Philpott DT, Button DC, Power KE. Exp Brain Res; 2016 Aug 01; 234(8):2339-49. PubMed ID: 27038204 [Abstract] [Full Text] [Related]
24. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males. Aboodarda SJ, Copithorne DB, Pearcey GEP, Button DC, Power KE. Neurosci Lett; 2015 Oct 21; 607():66-71. PubMed ID: 26415709 [Abstract] [Full Text] [Related]
25. Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans. Kimura T, Yamanaka K, Nozaki D, Nakazawa K, Miyoshi T, Akai M, Ohtsuki T. Exp Brain Res; 2003 Sep 21; 152(1):123-32. PubMed ID: 12879181 [Abstract] [Full Text] [Related]
26. Shortening-induced torque depression in old men: implications for age-related power loss. Power GA, Makrakos DP, Stevens DE, Herzog W, Rice CL, Vandervoort AA. Exp Gerontol; 2014 Sep 21; 57():75-80. PubMed ID: 24835195 [Abstract] [Full Text] [Related]
27. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions. Saito A, Nakagawa K, Masugi Y, Nakazawa K. Exp Brain Res; 2021 Feb 21; 239(2):463-474. PubMed ID: 33221989 [Abstract] [Full Text] [Related]
28. Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. Gruber M, Linnamo V, Strojnik V, Rantalainen T, Avela J. J Neurophysiol; 2009 Apr 21; 101(4):2030-40. PubMed ID: 19193768 [Abstract] [Full Text] [Related]
29. The force-velocity relationship of the human soleus muscle during submaximal voluntary lengthening actions. Pinniger GJ, Steele JR, Cresswell AG. Eur J Appl Physiol; 2003 Sep 21; 90(1-2):191-8. PubMed ID: 14504953 [Abstract] [Full Text] [Related]
30. Muscle length and joint angle influence spinal but not corticospinal excitability to the biceps brachii across forearm postures. Forman DA, Abdel-Malek D, Bunce CMF, Holmes MWR. J Neurophysiol; 2019 Jul 01; 122(1):413-423. PubMed ID: 31116661 [Abstract] [Full Text] [Related]
31. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction. Forman D, Raj A, Button DC, Power KE. J Neurophysiol; 2014 Sep 01; 112(5):1142-51. PubMed ID: 24899677 [Abstract] [Full Text] [Related]
32. Excitatory drive to spinal motoneurones is necessary for serotonin to modulate motoneurone excitability via 5-HT2 receptors in humans. Henderson TT, Taylor JL, Thorstensen JR, Kavanagh JJ. Eur J Neurosci; 2024 Jan 01; 59(1):17-35. PubMed ID: 37994250 [Abstract] [Full Text] [Related]
33. Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions. Baudry S, Duchateau J. J Physiol; 2021 Mar 01; 599(5):1551-1566. PubMed ID: 33481277 [Abstract] [Full Text] [Related]
34. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. Bowtell JL, Avenell G, Hunter SP, Mileva KN. PLoS One; 2013 Mar 01; 8(10):e77004. PubMed ID: 24098574 [Abstract] [Full Text] [Related]
35. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Löscher WN, Nordlund MM. Muscle Nerve; 2002 Jun 01; 25(6):864-72. PubMed ID: 12115976 [Abstract] [Full Text] [Related]
36. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation. Lagan J, Lang P, Strutton PH. Clin Neurophysiol; 2008 Dec 01; 119(12):2839-45. PubMed ID: 18976953 [Abstract] [Full Text] [Related]
37. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles. Kesar TM, Tan A, Eicholtz S, Baker K, Xu J, Anderson JT, Wolf SL, Borich MR. Neural Plast; 2019 Dec 01; 2019():5190671. PubMed ID: 31565049 [Abstract] [Full Text] [Related]
38. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. McNeil CJ, Martin PG, Gandevia SC, Taylor JL. J Physiol; 2009 Dec 01; 587(Pt 23):5601-12. PubMed ID: 19805743 [Abstract] [Full Text] [Related]
39. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Am J Physiol Regul Integr Comp Physiol; 2015 Jun 15; 308(12):R998-1007. PubMed ID: 25876651 [Abstract] [Full Text] [Related]
40. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S. Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]