These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Voluntary activation does not differ when using two different methods to determine transcranial magnetic stimulator output. Bruce CD, Magnuson JR, McNeil CJ. J Neurophysiol; 2023 Oct 01; 130(4):925-930. PubMed ID: 37671448 [Abstract] [Full Text] [Related]
44. Behaviour of the motoneurone pool in a fatiguing submaximal contraction. McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. J Physiol; 2011 Jul 15; 589(Pt 14):3533-44. PubMed ID: 21606110 [Abstract] [Full Text] [Related]
45. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Yacyshyn AF, Woo EJ, Price MC, McNeil CJ. Exp Brain Res; 2016 Dec 15; 234(12):3457-3463. PubMed ID: 27481287 [Abstract] [Full Text] [Related]
46. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. Geertsen SS, Zuur AT, Nielsen JB. J Physiol; 2010 Jul 01; 588(Pt 13):2391-402. PubMed ID: 20457734 [Abstract] [Full Text] [Related]
47. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling. Forman DA, Philpott DT, Button DC, Power KE. J Neurophysiol; 2015 Oct 01; 114(4):2285-94. PubMed ID: 26289462 [Abstract] [Full Text] [Related]
49. The Sexes Do Not Differ for Neural Responses to Submaximal Elbow Extensor Fatigue. Yacyshyn AF, McNeil CJ. Med Sci Sports Exerc; 2020 Sep 01; 52(9):1992-2001. PubMed ID: 32195769 [Abstract] [Full Text] [Related]
52. Corticospinal and spinal excitability during peripheral or central cooling in humans. Talebian Nia M, Leclerc C, Glazebrook C, Chopek J, Giesbrecht GG. J Therm Biol; 2023 Feb 01; 112():103489. PubMed ID: 36796930 [Abstract] [Full Text] [Related]
53. Real-time changes in corticospinal excitability related to motor imagery of a force control task. Tatemoto T, Tsuchiya J, Numata A, Osawa R, Yamaguchi T, Tanabe S, Kondo K, Otaka Y, Sugawara K. Behav Brain Res; 2017 Sep 29; 335():185-190. PubMed ID: 28827129 [Abstract] [Full Text] [Related]
55. Specific modulation of corticomuscular coherence during submaximal voluntary isometric, shortening and lengthening contractions. Glories D, Soulhol M, Amarantini D, Duclay J. Sci Rep; 2021 Mar 18; 11(1):6322. PubMed ID: 33737659 [Abstract] [Full Text] [Related]
56. Influence of fascicle strain and corticospinal excitability during eccentric contractions on force loss. Doguet V, Nosaka K, Guével A, Ishimura K, Guilhem G, Jubeau M. Exp Physiol; 2019 Oct 18; 104(10):1532-1543. PubMed ID: 31374136 [Abstract] [Full Text] [Related]
57. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability. Pulverenti TS, Trajano GS, Kirk BJC, Blazevich AJ. Eur J Appl Physiol; 2019 Oct 18; 119(10):2287-2299. PubMed ID: 31456049 [Abstract] [Full Text] [Related]
58. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Aboodarda SJ, Šambaher N, Millet GY, Behm DG. Neuroscience; 2017 Jan 06; 340():477-486. PubMed ID: 27826108 [Abstract] [Full Text] [Related]
59. Corticospinal responses during passive shortening and lengthening of tibialis anterior and soleus in older compared to younger adults. Škarabot J, Ansdell P, Howatson G, Goodall S, Durbaba R. Exp Physiol; 2020 Mar 06; 105(3):419-426. PubMed ID: 31860743 [Abstract] [Full Text] [Related]
60. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Mang CS, Lagerquist O, Collins DF. Exp Brain Res; 2010 May 06; 203(1):11-20. PubMed ID: 20217400 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]