These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
85 related items for PubMed ID: 30465571
1. Factors governing when a metal-bound water is deprotonated in proteins. Grauffel C, Lim C. Phys Chem Chem Phys; 2018 Dec 05; 20(47):29625-29636. PubMed ID: 30465571 [Abstract] [Full Text] [Related]
2. Factors Governing the Bridging Water Protonation State in Polynuclear Mg(2+) Proteins. Grauffel C, Lim C. J Phys Chem B; 2016 Mar 03; 120(8):1759-70. PubMed ID: 26560089 [Abstract] [Full Text] [Related]
3. Factors governing the protonation state of cysteines in proteins: an Ab initio/CDM study. Dudev T, Lim C. J Am Chem Soc; 2002 Jun 12; 124(23):6759-66. PubMed ID: 12047197 [Abstract] [Full Text] [Related]
4. An efficient protocol for computing the pKa of Zn-bound water. Grauffel C, Chu B, Lim C. Phys Chem Chem Phys; 2018 Dec 05; 20(47):29637-29647. PubMed ID: 30444500 [Abstract] [Full Text] [Related]
5. Factors governing the protonation state of Zn-bound histidine in proteins: a DFT/CDM study. Lin YL, Lim C. J Am Chem Soc; 2004 Mar 03; 126(8):2602-12. PubMed ID: 14982470 [Abstract] [Full Text] [Related]
7. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. Dudev T, Lin YL, Dudev M, Lim C. J Am Chem Soc; 2003 Mar 12; 125(10):3168-80. PubMed ID: 12617685 [Abstract] [Full Text] [Related]
9. Influence of metal cations on the intramolecular hydrogen-bonding network and pKa in phosphorylated compounds. Yang P, Spiess B, Murthy PP, Brown RE. J Phys Chem A; 2007 May 10; 111(18):3602-12. PubMed ID: 17432837 [Abstract] [Full Text] [Related]
10. Factors governing the metal coordination number in metal complexes from Cambridge Structural Database analyses. Dudev M, Wang J, Dudev T, Lim C. J Phys Chem B; 2006 Feb 02; 110(4):1889-95. PubMed ID: 16471760 [Abstract] [Full Text] [Related]
14. Impact of ligand protonation on eigen-type metal complexation kinetics in aqueous systems. van Leeuwen HP, Town RM, Buffle J. J Phys Chem A; 2007 Mar 22; 111(11):2115-21. PubMed ID: 17388287 [Abstract] [Full Text] [Related]
15. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions. Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F. J Am Chem Soc; 2011 Dec 14; 133(49):19743-57. PubMed ID: 22092013 [Abstract] [Full Text] [Related]
16. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB, Raushel FM. Biochemistry; 1996 Aug 20; 35(33):10904-12. PubMed ID: 8718883 [Abstract] [Full Text] [Related]
17. Electrostatic contributions to residue-specific protonation equilibria and proton binding capacitance for a small protein. Lindman S, Linse S, Mulder FA, André I. Biochemistry; 2006 Nov 28; 45(47):13993-4002. PubMed ID: 17115694 [Abstract] [Full Text] [Related]
18. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Huang CC, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW. Biochemistry; 1996 Mar 19; 35(11):3439-46. PubMed ID: 8639494 [Abstract] [Full Text] [Related]