These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 30465972
1. The dissipation of cyazofamid and its main metabolite in soil response oppositely to biochar application. Tang F, Xu Z, Gao M, Li L, Li H, Cheng H, Zhang C, Tian G. Chemosphere; 2019 Mar; 218():26-35. PubMed ID: 30465972 [Abstract] [Full Text] [Related]
2. The dissipation of cyazofamid and its main metabolite CCIM during tomato growth and tomato paste making process. Yang Q, Liu N, Zhang S, Wang W, Zou Y, Gu Z. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Sep; 36(9):1327-1336. PubMed ID: 31226007 [Abstract] [Full Text] [Related]
3. An old story with new insights into an ignored issue of metabolites in biochar-amended soil: Effect of biochar on dissipation of carbosulfan as an example. Tang F, Gao M, Zeng F, Xu Z, Tian G. Sci Total Environ; 2021 Oct 10; 790():148100. PubMed ID: 34380258 [Abstract] [Full Text] [Related]
4. Analysis of cyazofamid and its metabolite in the environmental and crop samples using LC-MS/MS. Lee H, Kim E, Lee JH, Sung JH, Choi H, Kim JH. Bull Environ Contam Toxicol; 2014 Nov 10; 93(5):586-90. PubMed ID: 25173365 [Abstract] [Full Text] [Related]
5. Simultaneous determination of residues of metalaxyl, cyazofamid and a cyazofamid metabolite in tobacco leaves and soil by liquid chromatography with tandem mass spectrometry. Wu S, Yu W, Sun C, Zheng K, Zhang H, Huang M, Hu D, Zhang K. Biomed Chromatogr; 2018 Apr 10; 32(4):. PubMed ID: 29226978 [Abstract] [Full Text] [Related]
6. Field investigations of dissipations and residues of cyazofamid in soil and tomato: risk assessment of human exposure to cyazofamid via tomato intake. Xu Z, Zhang C, Yu J, Zhang C, Wu M, He H, Zhu Y, Lou F, Wu Y, Wang Y, Chen L, Zhao H, Wang Q, Cai L. Environ Sci Pollut Res Int; 2017 Feb 10; 24(4):3483-3492. PubMed ID: 27878481 [Abstract] [Full Text] [Related]
7. The Dissipation of Cyazofamid and Its Main Metabolite CCIM During Wine-Making Process. Yang Q, Wei S, Liu N, Gu Z. Molecules; 2020 Feb 11; 25(4):. PubMed ID: 32054034 [Abstract] [Full Text] [Related]
8. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. Zhang F, Li Y, Zhang G, Li W, Yang L. Environ Sci Pollut Res Int; 2017 Apr 11; 24(10):9575-9584. PubMed ID: 28247270 [Abstract] [Full Text] [Related]
9. Residue Monitoring and Risk Assessment of Cyazofamid and Its Metabolite in Korean Cabbage Under Greenhouse Conditions. Sarker A, Lee SH, Kwak SY, Nam AJ, Kim HJ, Kim JE. Bull Environ Contam Toxicol; 2020 Oct 11; 105(4):595-601. PubMed ID: 32862252 [Abstract] [Full Text] [Related]
10. The effects of woodchip- and straw-derived biochars on the persistence of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils. Muter O, Berzins A, Strikauska S, Pugajeva I, Bartkevics V, Dobele G, Truu J, Truu M, Steiner C. Ecotoxicol Environ Saf; 2014 Nov 11; 109():93-100. PubMed ID: 25173744 [Abstract] [Full Text] [Related]
11. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.). Tatarková V, Hiller E, Vaculík M. Ecotoxicol Environ Saf; 2013 Jun 11; 92():215-21. PubMed ID: 23474069 [Abstract] [Full Text] [Related]
12. Contrasting dynamics of polychlorinated biphenyl dissipation and fungal community composition in low and high organic carbon soils with biochar amendment. Huang S, Shan M, Chen J, Penttinen P, Qin H. Environ Sci Pollut Res Int; 2018 Nov 11; 25(33):33432-33442. PubMed ID: 30264347 [Abstract] [Full Text] [Related]
13. In-vitro evaluation of rice straw biochars' effect on bispyribac-sodium dissipation and microbial activity in soil. Sharma N, Kaur P, Jain D, Bhullar MS. Ecotoxicol Environ Saf; 2020 Mar 15; 191():110204. PubMed ID: 31954925 [Abstract] [Full Text] [Related]
14. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content. Ouyang W, Zhao X, Tysklind M, Hao F. Water Res; 2016 Apr 01; 92():156-63. PubMed ID: 26852289 [Abstract] [Full Text] [Related]
15. Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Ni N, Wang F, Song Y, Bian Y, Shi R, Yang X, Gu C, Jiang X. Chemosphere; 2018 Apr 01; 196():288-296. PubMed ID: 29306781 [Abstract] [Full Text] [Related]
16. [Effects of biochars produced from different sources on arsenic adsorption and desorption in soil]. Guan LZ, Zhou JJ, Zhang Y, Zhang GC, Zhang JH, Chan ZX. Ying Yong Sheng Tai Xue Bao; 2013 Oct 01; 24(10):2941-6. PubMed ID: 24483091 [Abstract] [Full Text] [Related]
17. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Jin J, Kang M, Sun K, Pan Z, Wu F, Xing B. Sci Total Environ; 2016 Apr 15; 550():504-513. PubMed ID: 26845186 [Abstract] [Full Text] [Related]
18. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Xu D, Zhao Y, Sun K, Gao B, Wang Z, Jin J, Zhang Z, Wang S, Yan Y, Liu X, Wu F. Chemosphere; 2014 Sep 15; 111():320-6. PubMed ID: 24997935 [Abstract] [Full Text] [Related]
19. Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils. Cheng H, Tang G, Wang S, Rinklebe J, Zhu T, Cheng L, Feng S. Environ Int; 2022 Nov 15; 169():107500. PubMed ID: 36088871 [Abstract] [Full Text] [Related]
20. Effects of pH and gallic acid on the adsorption of two ionizable organic contaminants to rice straw-derived biochar-amended soils. He Y, Yao T, Tan S, Yu B, Liu K, Hu L, Luo K, Liu M, Liu X, Bai L. Ecotoxicol Environ Saf; 2019 Nov 30; 184():109656. PubMed ID: 31526920 [Abstract] [Full Text] [Related] Page: [Next] [New Search]