These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


576 related items for PubMed ID: 30467750

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Magnetic nanoparticles coated with aminated polymer brush as a novel material for effective removal of Pb(II) ions from aqueous environments.
    Yılmaz Ş, Zengin A, Akbulut Y, Şahan T.
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20454-20468. PubMed ID: 31102228
    [Abstract] [Full Text] [Related]

  • 4. Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles.
    Chaudhary GR, Saharan P, Kumar A, Mehta SK, Mor S, Umar A.
    J Nanosci Nanotechnol; 2013 May; 13(5):3240-5. PubMed ID: 23858837
    [Abstract] [Full Text] [Related]

  • 5. Assessment of Ethidium bromide and Ethidium monoazide bromide removal from aqueous matrices by adsorption on cupric oxide nanoparticles.
    Fakhri A.
    Ecotoxicol Environ Saf; 2014 Jun; 104():386-92. PubMed ID: 24630576
    [Abstract] [Full Text] [Related]

  • 6. Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies.
    Dizge N, Aydiner C, Demirbas E, Kobya M, Kara S.
    J Hazard Mater; 2008 Feb 11; 150(3):737-46. PubMed ID: 17574338
    [Abstract] [Full Text] [Related]

  • 7. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.
    Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M.
    J Hazard Mater; 2009 Dec 15; 172(1):353-62. PubMed ID: 19656623
    [Abstract] [Full Text] [Related]

  • 8. Green synthesis, characterization, and application of metal oxide nanoparticles for mercury removal from aqueous solution.
    Gindaba GT, Demsash HD, Jayakumar M.
    Environ Monit Assess; 2022 Oct 21; 195(1):9. PubMed ID: 36269461
    [Abstract] [Full Text] [Related]

  • 9. Mechanistic insights into ethidium bromide removal by palygorskite from contaminated water.
    Chang PH, Sarkar B.
    J Environ Manage; 2021 Jan 15; 278(Pt 2):111586. PubMed ID: 33171377
    [Abstract] [Full Text] [Related]

  • 10. Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability.
    Akin D, Yakar A, Gündüz U.
    Water Environ Res; 2015 May 15; 87(5):425-36. PubMed ID: 26460462
    [Abstract] [Full Text] [Related]

  • 11. Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene.
    Zhang Y, Jiao Z, Hu Y, Lv S, Fan H, Zeng Y, Hu J, Wang M.
    Environ Sci Pollut Res Int; 2017 Jan 15; 24(3):2987-2995. PubMed ID: 27848131
    [Abstract] [Full Text] [Related]

  • 12. Removal of Fast Green FCF dye from aqueous solutions using Flower Gel as a low-cost adsorbent.
    Abdi S, Nasiri M.
    Water Sci Technol; 2018 Mar 15; 77(5-6):1213-1221. PubMed ID: 29528309
    [Abstract] [Full Text] [Related]

  • 13. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.
    Kamran S, Absalan G, Asadi M.
    Amino Acids; 2015 Dec 15; 47(12):2483-93. PubMed ID: 26149480
    [Abstract] [Full Text] [Related]

  • 14. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution.
    Panneerselvam P, Morad N, Tan KA.
    J Hazard Mater; 2011 Feb 15; 186(1):160-8. PubMed ID: 21146294
    [Abstract] [Full Text] [Related]

  • 15. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites.
    Duman O, Özcan C, Gürkan Polat T, Tunç S.
    Environ Pollut; 2019 Jan 15; 244():723-732. PubMed ID: 30384078
    [Abstract] [Full Text] [Related]

  • 16. Facile synthesis of yeast cross-linked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V).
    Rajesh Kumar S, Jayavignesh V, Selvakumar R, Swaminathan K, Ponpandian N.
    J Colloid Interface Sci; 2016 Dec 15; 484():183-195. PubMed ID: 27610473
    [Abstract] [Full Text] [Related]

  • 17. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites.
    Jiang Z, Li J, Huang G, Yan L, Ma J.
    Environ Sci Pollut Res Int; 2024 Jan 15; 31(2):3276-3295. PubMed ID: 38085489
    [Abstract] [Full Text] [Related]

  • 18. The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies.
    Aktas D, Dizge N, Cengiz Yatmaz H, Caliskan Y, Ozay Y, Caputcu A.
    Water Sci Technol; 2017 Dec 15; 76(11-12):3114-3125. PubMed ID: 29210697
    [Abstract] [Full Text] [Related]

  • 19. Adsorption of ethidium bromide from aqueous solution onto nutraceutical industrial fennel seed spent: Kinetics and thermodynamics modeling studies.
    Sulthana R, Taqui SN, Zameer F, Syed UT, Syed AA.
    Int J Phytoremediation; 2018 Sep 19; 20(11):1075-1086. PubMed ID: 30156921
    [Abstract] [Full Text] [Related]

  • 20. The study of non-linear kinetics and adsorption isotherm models for Acid Red 18 from aqueous solutions by magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate.
    Berizi Z, Hashemi SY, Hadi M, Azari A, Mahvi AH.
    Water Sci Technol; 2016 Sep 19; 74(5):1235-42. PubMed ID: 27642843
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.