These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 30479969

  • 1. Tolerance of Tithonia diversifolia and Chromolaena odorata in heavy metal simulated-polluted soils and three selected dumpsites.
    Ayesa SA, Chukwuka KS, Odeyemi OO.
    Toxicol Rep; 2018; 5():1134-1139. PubMed ID: 30479969
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.
    Jampasri K, Pokethitiyook P, Kruatrachue M, Ounjai P, Kumsopa A.
    Int J Phytoremediation; 2016 Oct 02; 18(10):994-1001. PubMed ID: 27159380
    [Abstract] [Full Text] [Related]

  • 4. Antimalarial actions of Lawsonia inermis, Tithonia diversifolia and Chromolaena odorata in combination.
    Afolayan FID, Adegbolagun OM, Irungu B, Kangethe L, Orwa J, Anumudu CI.
    J Ethnopharmacol; 2016 Sep 15; 191():188-194. PubMed ID: 27321410
    [Abstract] [Full Text] [Related]

  • 5. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H.
    J Environ Manage; 2015 Jun 01; 156():62-9. PubMed ID: 25796039
    [Abstract] [Full Text] [Related]

  • 6. Phytoremediation potential of Chromolaena odorata, Impatiens patula, and Gynura pseudochina grown in cadmium-polluted soils.
    Jampasri K, Saeng-Ngam S, Larpkern P, Jantasorn A, Kruatrachue M.
    Int J Phytoremediation; 2021 Jun 01; 23(10):1061-1066. PubMed ID: 33501846
    [Abstract] [Full Text] [Related]

  • 7. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J, Gonzales MJ, Ponce O, Ramírez L, León V, Torres A, Corpus M, Loayza-Muro R.
    Environ Sci Pollut Res Int; 2018 Dec 01; 25(34):33957-33966. PubMed ID: 30280335
    [Abstract] [Full Text] [Related]

  • 8. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.
    Li Z, Wu L, Luo Y, Christie P.
    Chemosphere; 2018 Mar 01; 194():432-440. PubMed ID: 29227891
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.
    Kocoń A, Jurga B.
    Environ Sci Pollut Res Int; 2017 Feb 01; 24(5):4990-5000. PubMed ID: 27995509
    [Abstract] [Full Text] [Related]

  • 11. Evaluation of soil metal sorption characteristics and heavy metal extractive ability of indigenous plant species in Abeokuta, Nigeria.
    Azeez JO, Olowoboko TB, Bada BS, Odedina JN, Onasanya OO.
    Int J Phytoremediation; 2020 Feb 01; 22(8):872-884. PubMed ID: 31994407
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.
    Tzvetkova N, Miladinova K, Ivanova K, Georgieva T, Geneva M, Markovska Y.
    J Environ Biol; 2015 Jan 01; 36 Spec No():145-51. PubMed ID: 26591894
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions.
    Palanivel TM, Pracejus B, Victor R.
    Environ Sci Pollut Res Int; 2020 May 01; 27(14):17359-17369. PubMed ID: 32157545
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter.
    Xing W, Liu H, Banet T, Wang H, Ippolito JA, Li L.
    Ecotoxicol Environ Saf; 2020 Jul 15; 198():110683. PubMed ID: 32361499
    [Abstract] [Full Text] [Related]

  • 18. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media.
    Saeng-Ngam S, Jampasri K.
    Bull Environ Contam Toxicol; 2022 Apr 15; 108(4):762-767. PubMed ID: 34997262
    [Abstract] [Full Text] [Related]

  • 19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF, Ngwa ES, Chikoye D, Suh CE.
    Int J Phytoremediation; 2014 Apr 15; 16(3):302-19. PubMed ID: 24912226
    [Abstract] [Full Text] [Related]

  • 20. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Carya cathayensis Production Area].
    Zhang HJ, Zhao KL, Ye ZQ, Xu B, Zhao WM, Gu XB, Zhang HF.
    Huan Jing Ke Xue; 2018 Jun 08; 39(6):2893-2903. PubMed ID: 29965648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.